学年

質問の種類

数学 高校生

この問題のキクで、どの部分からRQは円O”の弦(円周を通る)ことがわかりますか? 解説お願いします🙏

②メモ 20€ OF step2 速効を使って問題を解く アプローチ 点Aにおける円 0の接線上に点Pをとり、 Pから円0にもう1本の接線を引き、その接点をBとする。 2点0.0をそれぞれ中心とする2つの円がある。 円0の内部に円があり、2つの円は1点で接している らに、点Pと点を結ぶ直線と円′との交点をPに近い方から順に Q,R とする。 (2)直線PR が∠OPAを2等分しているとする。さらに円の半径が6でPA=8とする。このとき、 ウエであり,したがって円0′の半径は OP= である。 次に, 3点 Q,R, Bを通る円の中心を0" とし, 00'0” の内角の間の関係を調べる。 (1)によりO" は線分 OB上にある。 ∠00'0"=0 とおくと, ∠APO'=90°∠PO'A=90° <RO'Oかつ, ∠RO′O" [R 0 B (参考図) P A ア と には、次の⑨のうちから正しいものを1つずつ選べ。 O ARAQ ① ARPR ② PQ PR ③ PQ QR ④ PR QR 5 ARQ ⑥ BQR PQA 8 PRB QBR なので,∠APO' = 0 とな コ る。ゆえに、COSO= 10 である。 また, 四角形O" O'PBは円に内接するので、 O'O"Oシ 0となる。 解答 番号 ア イウ H 土 解答欄 456789 78 (1)3点 Q,R,Bを通る円が点Bで直線 PBに接することを示そう。 接線と弦のつくる角についての 質より∠PAQ = ∠PRAなので, △PAQと△PRAは互いに相似である。 したがって, PA'=アで ある。一方,PA=PBだからPB2=アでもある。よって, APBQとイは互いに相似となり、 ∠PBQ= ∠イとなる。ゆえに, 3点 Q,R, B を通る円は点Bで直線 PBに接することになる。 オ キ ク ケ ⑧⑨ コ サ ① 土 (0) 678 '04 センター試験 追試 数学Ⅰ・A

解決済み 回答数: 1
数学 高校生

(2) αは1の6乗根のひとつとありますがどこでそう分かりますか?6乗根のひとつはzじゃないのですか?

C2-48 (396) 第5章 複素数平面 Think 題 C2.22 単位円に内接する正多角形 複素数平面上において, 原点を中心とする半径 1の円に内接する正六角形の頂点を表す複素数を, 左回りに Z1 Z2 Z3 Z4, 25, 26 とする. y 23 24 O また,a=cosisin とする. **** 2ドモアブルの定理 (2)(1)よりは1の6乗根の1つであり. 1, a, a, a, a, a が 2-1=0の解となるから、 z-1=(z-1)(za)(za)(za)(za)(za) (397) p. C2-38 例題 C2.19 注)参照 y4 02 a 3 このとき 次の問いに答えよ. (1) 21+2+2+2+25 +26 の値を求めよ. 2 25 (2)(1-α)(1-α)(1-α) (1-α') (1-α)=6であることを証明せよ。 考え方 Z1,Z2,Z3, 24, 25, 26 は正六角形の頂点であり,この 6点は,単位円周上の6等分点である つまり,点2」を原点のまわりにだけ回転させると、 とおける. ......② a -1 0 一方、 2-1=(z-1)(z+2+2+2+z+1)③ (人監事金) である.ここで, ② ③より. (z-1)(za)(za)(za)(za)(za) =(z-1)(2+2+2+2+2+1) であるから! (za)(za)(za)(za)(za) =2+2+2+2+z+1 となる. これは,z についての恒等式であるから, z=1 を両 辺に代入すると, a a³ 22に移る。 同様に,それぞれの点を原点O のまわりに匹 だけ回転させると, 22→Z3Z3ZZ → Z5, 2s → Z6 にそれぞれ移る+0800 (p.C2-38 例題 C2.19 注》 参照) (1-α) (1-α) (1-α) (1-α) (1-α°)=6 が成り立つ モアブルの Focus |解答 (1) Z1・・・・・, Z6 は単位円周上の6等分点である. 2π また, α=COS- +isin- は、点zを原点のまわり n www 今だけ回転させる複素数であるから, 2π a=cos +isin とすると,単位円周をn 等分する点は, n 1, α, a, α^-' と表される また, C2-49 第5章 22=Qz1 23=αz2=2z1 26=025=021 となるので, 21+2+2+2+2+26 =z₁+azi+az₁+a³z₁+a'z₁+az₁...... z-1=(z-1)(z -α) (z -α^)......(z-a-l) 注)(1-α) (1-α²) (1-α) (1-α) (1-α)=6 より 両辺の絶対値をとると. ( (1-α) (1-α) (1-α²) (1-α) (1-α)|=|1-α||1-^||1-'||1-α '||1-α| =6 と なるこの式の図形的な意味を考えてみよう. 単位円周を6等分する点を A (1) A(a), 30 ①は,初項 z1, 公比αの等比数列の初項から第6項ま での和である. 初項 Z1, 公比 α (天丸) Sale Ba (αキ1) の等比数 A2(2), As(a), A(a), As(α) とすると, 単位円の弦の長さの積 AAAA2A(A3A)AAAs=6 であることを表している. A(a) A(a) As(a³) MAD (1) 0 α≠1 より 1-a となる. ここで, よって, 21+22+2+2+25+26=21 (1-0) a²= (cos +isin 77° =cos2n+isin2π =1 *#J 21+2+2+2+25+26=0 2 (1) 1200+ 2 (6) 列の初項から第 n項までの和は, z₁(1-a") 1-a このことは,練習 C2-22 の(2)のとおり,単位円周を 等分する点についても成り立つ つまり半径1の 円に内接する正n角形の1頂点から、他の各頂点に 引いた線分の長さの積はnになる. A(a) As(a) 練習 02.22 接する正五角形の頂点を表す複素数を、左回りに21.2. *** 23.…………… とする。また a=cos 2+isin 2 とする. n n (1)+22+2s+…+2=0であることを証明せよ。 (2)(1-α) (1-α²) (1-α)・・・・(1-α"-1)=nであることを (例)証明せよ. 複素数平面上において原点を中心とする半径1の円に 22 21 -1 0 1 x 12月 B1 B2 C1 (北海道大改) p.C2-5124 G2

解決済み 回答数: 1
数学 高校生

(3)の問題の青い線で何故円②なのでしょうか?解説お願いします🙇‍♂️

42 2円の交点を通る円 2x2+y^-2x+4y=0 ①, x2+y'+2x=1 ......② がある. 次の問いに答えよ. (1) ①,②は異なる2点で交わることを示せ. (2) ①,②の交点を P, Q とするとき, 2点 P, Q と点 (1, 0) を通 る円の方程式を求めよ. (3) 直線 PQ の方程式と弦 PQ の長さを求めよ. これが (10) を通るので -1+2k=0 よって, 求める円は 1 .. k= x² + y² −2x+4y+ 12 (x² + y²+2x−1)=0 .. (x-1)+(u+1)=280 (3) ③において, x2,y2 の項が消えるので, k=-1 : 4x-4y-1=0 ...... ④ 次に,円 ② の中心 (-1, 0) と直線④との距離をdとおくと, 精講 (1)2円が異なる2点で交わる条件は 「半径の差 <中心間の距離 <半径の和」 です. (数学ⅠA57) (2)38 の考え方を用いると, 2点P, Q を通る円は (x2+y²-2x+4y)+k(x2+y2+2x-1)=0 の形に表せます. (3)2点P,Qを通る直線も(2)と同様に (x2+y²-2x+4y)+k(x²+y'+2x-1)=0 と表せますが, 直線を表すためには,x', y' の項が消えなければならないの で, k=-1 と決まります. また, 円の弦の長さを求めるときは, 2点間の距 離の公式ではなく, 点と直線の距離 (34) 三平方の定理を使います. |-4-1| 5 d= √42+42 4√2 図より (1/2PQ)=(√2-d .. PQ²=4(2-25)-39 8 よって, PQ= /78 4 円② (-1,0) 1Q √2 注 (3)において, k=-1 ということは,①-② を計算したことにな ります。 ポイント 解 答 (1) ① より (x-1)+(y+2)²=5 ∴. 中心 (1,2), 半径 √5 ②より (x+1)+y^=2 ∴. 中心 (1,0), 半径 √2 中心間の距離=√2+2=√8 <3=2+1 <√5+√2 また,√5-√2 <3-1=2<√8 .. 半径の差<中心間の距離 <半径の和 よって, ①,②は異なる2点で交わる. (2) 2点P, Qを通る円は (x2+y²-2x+4y)+k(x2+y2+2.x-1)=0 ......③ とおける. 演習問題 42 2つの円x+y'+ax+by+c=0 と x2+y2+azx + by + cz = 0 が交点をもつとき (x+y+ax+by+ci)+k(x+y+azx+bzy+cz)=0 は k≠-1 のとき,2円の交点を通る円 k=-1 のとき,2円の交点を通る直線 2つの円x^2+y^2 と (x-1)+(y-1)²=4 は交点をもつこと を示し, その交点を通る直線の方程式を求めよ.

解決済み 回答数: 1
数学 高校生

(1)の解説の√5-√2<3-1=2<√8のところを詳しく教えて欲しいです🙇‍♀️

い こは < 胃に 422円の交点を通る円 69 ( これが (1,0)を通るので -1+2k=0 k=1/2 (I) 板 よって, 求める円は 2x2+y^2-2x+4y=0 ......①, x2+y2+2x=1...② がある. 次の問いに答えよ. > (1) ① ② は異なる2点で交わることを示せ. 5/8 (2) ① ② の交点を P, Q とするとき 2点P Qと点 (10) る円の方程式を求めよ. いま 5/8 礎 △(3) 直線 PQ の方程式と弦 PQ の長さを求めよ. 2円の交点を通る組 の (1)2円が異なる2点で交わる条件は " |精講 した 「半径の差 <中心間の距離 <半径の和」 です. (I A59) (2)38 の考え方を用いると, 2点P, Q を通る円は (x2+y^2-2x+4y)+k(x²+y2+2x-1)=0 の形に表せます. (3)2点P,Qを通る直線も (2) と同様に (x2+y²-2x+4y)+k(x2+y^+2x-1)=0 11+ar- + と表せますが,直線を表すためには, x2,y の項が消えなければならないの で, k=-1 と決まります.また,円の弦の長さを求めるときは、2点間の距 離の公式ではなく,点と直線の距離 (34) と三平方の定理を使います. 解 答 (1) ①より (x-1)+(y+2)²=5 r2+y²-2x+4y+1/(x²+y'+2x-1)=0 20 9 (3) ③において,x', y' の項が消えるので, k=-1 4x-4y-1=0 ......④ 次に,円②の中心(-1, 0) と直線 ④との距離をdとおくと, |-4-1| '5 d=- 4√√2 √√42+42 ☆三平方の定理 図より, (PQ)²=(√2)²-d² PQ³=4(2-35)-39 8 /78 よって, PQ=- 4 円② ④ (-1,0) d Q √2 /P 注 (3)において, k=-1 ということは,①-② を計算したことにな ります. ポイント 2つの円x+y+ax+by+c=0 と x+y+azx+by+C2= 0 が交点をもつとき .. ②より (x+1)^+y2=2 (1-)-1 よって、 ①,②は異なる2点で交わる 中心間の距離=√22+22=√8<3=2+1<√5+√2 また、√5-√2 <3-1=2<√88と5の大小を ..半径の差 <中心間の距離 <半径の和 仕較しやすくするため. 中心 (1, 2),半径 √5 中心 (1,0),半径√2 Xの距離→2 √(1-2) yout (2)2点P,Qを通る円は (x²+ y²-2x+4y)+k (x² + y²+2x-1)=0 .....3 とおける. 演習問題 42 (x²+ y²+ax+by+c₁) + k (x² + y²+α₂x+b₂y+c₂)=0 |£ k≠-1のとき、 2円の交点を通る円 k=1のとき,2円の交点を通る直線 2つの円x+y=2と (x-1)2+(y-1)²=4は交点をもつ

解決済み 回答数: 1
1/10