学年

質問の種類

数学 高校生

(2)の(ア)の解答のマーカー引いてある部分がなぜこの式変形になるのか教えて欲しいです

628 基本 28 内心、傍心の位置ベクトル 00000 (1)AB=8. BC=7,CA=5である △ABCにおいて、内心を1とするとき、 を AB, AC で表せ。 (2) AOAB において, OA=d, OB= とする。 別解 ベク とす (ア) を2等分するベクトルは,k ることを示せ。 (+) (kは実数, k≠0) と表され OA' 形O 点 C よっ (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 指針 線の交点をPとする。 このとき,OP を で表せ。 (1)三角形の内心は,3つの内角の二等分線の交点である。 次の「角の二等分線の定理」 を利用し, まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線BIに注目。 基本 26 (2)Oの二等分線と辺ABの交点をDとして,まずODを,で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1 となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると,点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し、係数比較」 の方針で。 AC=OA となる点Cをとり, (ア)の 点Pは∠Aの外角の二等分線上にある → 結果を使うとAPはa で表される。 OP = OA+APに注目。 (イ) 点 20 らっ OP AC と、 ZE よ a 0 解答 (1) △ABCの∠Aの二等分線と辺BCの交点をDとすると BD: DC=AB: AC=8:5 ZCの二等分線と辺 A ABの交点をEとし AE: EB=5:7, 5AB + 8AC 別解 よって AD= 10 13 8 15 EI:IC=:5 8 56 また, BD=7・・ であるから =2:3 A 13 13 56 B 7 D C AI: ID=BA: BD=8: -=13:7 このことを利用して もよい。 13 角の二等分線の定理 ゆえに 15 ゆえに 0D= |6|0A+|4|OB |a|+|6| AI=2AD=1.5AB+8AC-1AB+/AC 20 20 13 (2)Oの二等分線と辺AB の交点をDとすると AD: DB=0A: OB=||:|| を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 検討 0 aba a+ba 61 + (2) 練習 (1) |4| D|6| ③ 28 (2 求めるベクトルは, t を t≠0 である実数としてtOD と表 ab される。 |a|+|6| t=kとおくと, 求めるベクトルは (+) (kは実数, k≠0) a A tOD=|al|b a+ba +

回答募集中 回答数: 0
数学 高校生

(ア)の問題でなぜkとおけるのですか?

(1) AB=8, を AB, AC で表せ。 V (2) AOAB において, OA=d, OB=1とする。 (ア) ∠O を2等分するベクトルは, ることを示せ。 (+) (kは実数 と表され (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 線の交点をPとする。 このとき,OP を d, 方で表せ。 指針 (1) 三角形の内心は、3つの内角の二等分線の交点である。 次の「角の二等分線の定理」を利用し、 まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線 BI に注目。 B' 基本26 (2)Oの二等分線と辺 ABの交点をDとして,まずOD を a, b で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると, 点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し, 係数比較」の方針で。 → ACOA となる点Cをとり、(ア)の 点Pは∠Aの外角の二等分線上にある 結果を使うとAPはa, で表される。 OP = OA+APに注目。 AO (1)△ABCの∠Aの二等分線と辺BCの交点をDとすると Cの二等分線と辺 BD:DC=AB:AC=8:5 ABの交点をEとし 答 5AB + 8AC { AE: EB=5:7, よって AD= 13 8 56 また, BD=7• = であるから 13 13 56 AI: ID=BA:BD=8: =13:7 70-TO-HA 13 ゆえに 13 AI-202AD=122.5AB+8AC-1AB+/AC 13 20 20 13 4. (2)(ア∠Oの二等分線と辺 AB の交点をDとすると AD:DB=0A:OB=||:|| 3 =2:3 このことを利用して 角の二等分線の定理 を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 0=-8 15 EI: IC= : 5 10 B 7 D もよい。 ゆえにOD= |6|0A+|a|OB aba 方 = lal+161 + a+b a b 16 ab される。 求めるベクトルは,t を t≠0 である実数としてOD と表 t=kとおくと, 求めるベクトルは |a|+|6| + 6 (kは実数 k≠0) 161 A a a tOD= a+ba 0

未解決 回答数: 1
数学 高校生

青いマーカーで囲った図や比通りにやったのですが答えが会いません💦 解答の図だと左に外分した線が伸びているので外分する向きが決まっているのでしょうか??

364 基本 例題 64 三角形の角の二等分線と比 0000 (1)/AB=3,BC=4, CA=6 である △ABCにおいて, ∠Aの外角の二等分 線が直線 BC と交わる点をDとする。 線分 BD の長さを求めよ。 (2)AB=4,BC=3, CA = 2 である △ABCにおいて, ∠Aおよびその外角 の二等分線が直線BC と交わる点を, それぞれ D, E とする。 線分 DEの 長さを求めよ。 CHART & SOLUTION 三角形の角の二等分線によってできる線分比 線分比)=(三角形の2辺の比) p.361 基本事項 2 基本 △A C 平 B 4 内角の二等分線による線分比 PSAS 外角の二等分線による線分比 右の図で、いずれも → 外分 BP:PC=AB: AC A 各辺の大小関係を,できるだけ正確に図にかいて考える。 (HM-Ma)=H3 B 解答 に入する。 uts HAS CI 外分するか (1)点Dは辺BC を AB AC に外分するから H3 + HA)#CHU+HA) BD:DC=AB:AC (M8+MA)S="A+A AB: AC=1:2であるから BD:DC=1:2 AB:AC=3:6 よって BD=BC=4 D ■BD DC=1:2 から B C BD:BC=1:1 (2)点Dは辺BC を AB AC に内分するから ゆえに BD:DC=AB:AC=2:1 1 ← AB: AC=4:2 合う、または、 DC=- 2+1×BC=1 -XBC=1る。この点をHとすると また,点Eは辺BC を AB AC に外分するから BE: EC=AB:AC 内 =2:1 ゆえに CE=BC=3 よって DE=DC+CE

未解決 回答数: 0
数学 高校生

この線部の式の意味がよくわからないので教えてください🙇‍♀️ 蝶々型の面積比の問題です。

216 総合演習問題 §7 図形の性質 ( 7 (12分20点) 〔1〕 太郎さんのクラスでは,数学の授業で次の問題が宿題として出された。 6円 ABの 4 形は 問題 △ABCにおいて, AB = 4, BC=2, CA =3とする。 辺 AB を 1:3 に内分する点を D, △ABCの内心をIとして, 直線 AI と辺BC の交 点をE, 直線DIと辺BCの交点をFとする。 このとき, Iは線分 DF をどのような比に分けるか。 (1) 内心についての記述として,次の①~③のうち、正しいものはア である。 ア |の解答群 ⑩ 三角形の3本の中線は1点で交わり, この点が内心である。 ① 三角形の三つの内角の二等分線は1点で交わり, この点が内心である。 三角形の3辺の垂直二等分線は1点で交わり, この点が内心である。 三角形の3頂点から対辺またはその延長に下ろした垂線は1点で交わ り,この点が内心である。 (2) 太郎さんは宿題について考え, 次のように解答した。 イ AI I 点Iは内心であるから, BE= であり, である。こ ウ EI オ のとき, BF 「カキ] EF FI ケ であるから, である。 DI ク コサ よって, 点Iは線分 DF を コサ: ケ の比に内分する。 (3)△ADIと△EFIの面積比は AEFI 「シス] = AADI センタ である。 (次ページに続く。) 3)

回答募集中 回答数: 0
1/9