学年

質問の種類

数学 中学生

数学自体が嫌いすぎて分からないので、教えてくださいm(_ _)m

9 1次関数 中学で学習したこと チェックコーナー 1 1次関数 1次関数 y=-2x+5 について (1)x=4 に対応するyの値は[-3]。 (2) 変化の割合は [2] (3) xの増加量が3のときのyの増加量は [-6]。 (4)xの変域が2x3のときの yの変域は[-1 2 1次関数のグラフ ≦910 1次関数 y=-2x+5のグラフは, B 変化の割合が1 ポイント 1次関数の表, 式, グラフ x ...-2-1 0 1 2 y ... 9 7 5 3 1 ... x=0 のときの yの値 xが1増加した ときのyの増加量 y=-2x+5 変化の割合 2 3 傾き 直線の式は y=- とmと 4との交点を A,直線1,”とx軸との 交点をそれぞれB,Cとする。 次の問に答え 右の図で、直線の式は y=2x-1, みたす1次 次関数を求めなさい。 次の条件をみたす で,x = -4 のとき y=7 グラフが2点(2)(3)を通る。 グラフが点(4, 1) を通り, 直線 y=-2x-4 に平行 く傾きがmなら、 式を y=mx + b と おき、点の座標 が(p,g)なら x=D.y = q この式に代入 して,bの値を 求める。 <(3) 平行な直線 は、傾きが等し い。 -x+2 である。 直線 (1) 傾きが[ 2 ], 切片が[ 5 ]。 (2) 右へ進むと, 上へ ] 進む 切 (3) グラフは [ 右]下がりの直線。 46 1次関数y= - x-1 について,次の間に答えなさい。 3 2 (1)この関数のグラフの傾きと切片を求 めなさい。 (2)この関数のグラフをかきなさい。 (3)xの変域を 1 <x<4 としたとき のyの変域を求めなさい。 (4) このグラフをy軸の正の方向に3平 行移動させた直線の式を求めなさい。 0 5 < 1次関数 y=ax+b 傾き 切片 なさい。 点Aの座標を求めなさい。 2) △ABCの面積を求めなさい。 O /B 直線1mの交 点だから、1,m の式を連立方程 式として解いて 求める。 < (4) では,平行移 動させても傾き は変わらない。 グラフ上の各点 は3だけ上に移 動する。 50 して、時速4km で歩いて図書館に向 兄は, 家から2km離れた図書館に自転車で行き, 図書館で本を借りて から同じ速さで家に戻った。 弟は, 兄が家を出発してから15分後に家を出発 y(km) 47 右の図の直線(1)(2)(3)の式を求 かった。右のグラフは, 兄が家を出 発してからx分後の家からの道のり ykmとして, 兄の進むようすを 2 1 (1) (3) 傾きを調べるに -5- めなさい。 は、 x 座標, y 座 標がどちらも整 表したものである。このとき,次の 問に答えなさい。 0 10 20 30 40 50 (分) 数になる2点を 考えるとよい。 0 5 (1) 兄の自転車の時速を求めなさい。 (2) 兄と弟がすれ違うのは, 家から何kmの地点か, 求めなさい。 弟の進むようす を表すグラフを かき入れる。 コーナー (1)-3-(2)-2(3)-6(4)-Sys 2 (1)-2, 5 (2)-2 (3)

未解決 回答数: 1
数学 高校生

赤線のところの座標はどうやって求めるのか分かりません!あと並行みたいな感じで書かれている直線もどうやって導き出せばいいのか分からないです! 他の資料にX+y=kと書いてあったのですがそうすると 上手くいかなくて答えに載っているX−y=kだと上手くいったのですが、いつもどっち... 続きを読む

基本例題 122 領域と1次式の最大 最小 (1) x. ①①①①① yが3つの不等式3x-5y≧-16,3x-y≦4, x+y≧0 を満たすとき, 2x+5yの最大値および最小値を求めよ。 p.194 基本事項 基本 124 指針 連立不等式を考えるときは,図示が有効である。まず,条件の不等式の表す領域 D を 図示し, f(x, y) =k とおいて,図形的に考える。 ...... 1 2x+5y=k ①とおく。これは、傾き1/23y切片 1/3の直線。 5 ② 直線 ①が領域 D と共有点をもつようなんの値の範囲を調べる。 → 直線 ① を平行移動させたときのy切片の最大値・最小値を求める。 3 3章 1 不等式の表で CHART 領域と最大・最小 図示して,=kの直線 (曲線)の動きを追う 解答 与えられた連立不等式の表す 領域をDとすると, 領域 D は3点 境界線は ① (3,5) (1, 1), (-2, 2), (3, 5) を頂点とする三角形の周およ k=31 び内部である。 (-2,2) -3<< 31 3x-5y=-16から 16 3 y=1/2x+ 5 3x-y=4から y=3x-4 x+y=0からy=-x 2x+5y=k ...... ① とおく (1,-1) 境界線の交点の座標を求 めておくこと。 2 k=-3 これは傾き 切片 2 k 5' ①からy=-- k の直線を表す。 この直線が領域Dと共有点をもつようなんの値の最大 値と最小値を求めればよい。 図から,kの値は, 直線 ①が点 (3,5) を通るとき最大に直線①の傾きと,Dの なり,点 (1, -1) を通るとき最小になる。 よって, 2x+5y は るとき。 x=3, y=5のとき最大値 2・3+5・5=31, 境界線の傾きを比べる。 直線 ①がD の三角形の 頂点を通るときに注目。 x=1, y=-1のとき最小値 2・1+5・(-1)=-3 大阪 をとる。 検討 線形計画法 x, yがいくつかの1次不等式を満たすとき, x, yの1次式 ax + by の最大値または最小値 について考える問題を 線形計画法の問題という。 線形計画法の問題では、1次不等式の 条件を図示すると,多角形になるが, ax + by は, 多角形のどれかの頂点で最大値または最 小値をとることが多い。 練習 (1) x, y が4つの不等式x≧0,y≧0, x+2y≦6, 2x+y≦6 を満たすとき, x-yの 最大値および最小値を求めよ。 ② 122 (2)x,yが連立不等式x+y ≧ 1, 2x+y=6, x+2y≦4 を満たすとき, 2x+3y の最 大値および最小値を求めよ。

解決済み 回答数: 1
1/8