学年

質問の種類

数学 高校生

(3)の問題の解説の最後の4ってどこから来たんですか?教えてください!!お願いします

事柄E の起こり方が通りあり、その おのおのの起こり方に対して事柄 F の起こ り方がn通りあるとき, 「E, Fがともに (あるいは続けて) 起こる場合の数」 は mn 通り ば,求める記入の仕方が得られる. (3) まず, 8つの数の和が偶数となるのはどのような ときか考えよう. 一般に,偶数,奇数の和の偶奇について, (偶数) + (偶数) = (偶数), (奇数)+(奇数) = (偶数), 積の法則 (偶数)+(奇数)=(奇数) を用いると,一番左の縦の列の記入の仕方は 3.26通り である. である. 他の縦の列の記入の仕方も同様にそれぞれ6通 りであるから, 再び積の法則を用いると, 記入の仕 方は全部で となる. 6.6・6・6=6通り (2) 1,2,3 すべての数字を用いて記入したものを直 接数え上げようとすると, 1, 2, 3 をそれぞれいく つずつ用いて記入するか場合分けをして計算するこ とになり、やや面倒である. そこで解答では, (1)で求めた記入の仕方が (i) 1, 2, 3 すべての数字を用いる場合, さらに,(2)の記入の仕方では, 2 (偶数) の記入 されるマス目の個数が1以上4以下であることに 着目して, 「2 (偶数)」 と 「1または3 (奇数)」が それぞれいくつ記入されるかと,そのときの8つ の数の和の偶奇を表にすると,次のようになる。 2 (偶数) 1または3 (奇数) 8つの数の和の偶奇 1つ 2つ 3つ 4つ 7つ 6 つ 5つ 4つ 奇数偶数 奇数偶数 よって、8つの数の和が偶数となるような記入の 仕方には,次の(ア)(イ) の2つの場合がある. (ア) 221または3を6つ記入する場合. (イ) 2を4つ 1または3を4つ記入する場合. 解答では、(ア)の記入の仕方を 2 2 2つの2を記入 2列の上段または下段に 一方,縦の列に記入する数字の組合せに着目し, 次のように解くこともできる. (3)の別解) 縦の列に記入する数字の組合せは {1, 2}, {1,3}, {2,3} の3組あり, 2が記入されている縦の列 2 3 の残りのマス目に 1 2 1または3を記入 2 3 3 1 残りの縦2列に 1 1 2 3 1または3を記入 の順に考えた. それぞれの記入の仕方は順に 4C2・22=24通り, 2・2=4通り, 24通り であるから, (ア)の記入の仕方は である. 24.4.4=384 通り また、(イ)の記入の仕方を 2 2 22 縦 4列の上段または下段に 4つの2を記入 残りの4マスに1または3 {1, 2} の2数の和3は奇数, {1,3} の2数の和4は偶数, {2,3} の2数の和5は奇数 であることに着目すると、 表に書かれている8つ の数の和が偶数となるような記入の仕方には,次の (ウ),(エ)の2つの場合がある. (ウ){1,3} で縦 2列, {1, 2} または {2, 3} で縦 2列を記入する場合. {1,3} で縦 2列を記入する仕方を考える. 記入する縦の列を4列から2列選び,さらに, それぞれ1, 3 を表の上段, 下段に記入すると考 えると, {1,3} で縦2列を記入する仕方は 2・22=24通り 次に,この記入の仕方それぞれに対し、残った 縦2列を {1, 2} または {2,3} で記入する仕方 を考える. 記入する数字の組合せの選び方が22通りあ り,それぞれに対して表の上段, 下段への記入の 仕方が 22通りあるから, 縦 2列を {1, 2} また は{2,3} で記入する仕方は

未解決 回答数: 1
数学 高校生

数列の問題です 右の緑マーカーを引いているP1=2/5ってどうやって出すんですか??

例題 B1.51 漸化式と確率 ( 2 ) **** ら1個の玉を取り出し、数字を調べて袋へ戻す。 この試行をn回続けて 袋の中に1から5までの数字を書いた5個の玉が入っている. この中か 得られる他 答えよ。 2個の数字の和が偶数である確率を とするとき 次の問いに (1) Pr+1 をPm で表せ (2) pm を求めよ . 第8章 回目 の 考え方 (1) (n+1) 個の数字の和が偶数となるのは、 解答 ・ (慶應義塾大改) おも (i)回目までの数字の和が偶数で, (n+1)回目も偶数 回目までの数字の和が奇数で,(n+1)回目も奇数 の2つの場合が考えられる. (2)(1)で求めた式 (漸化式) から " を求める。 (1)(n+1)回の試行で,(n+1)個の数字の和が 偶数となるのは, 2回の試行での数字の和が偶数で (n+1)回目 も偶数の場合か、 wwwwwww wwwww 回の試行での数字の和が奇数で (n+1)回目 wwwwwww n 割っ も奇数の場合である。 (偶数)+(偶数) (偶数) (奇数)+(奇数 偶数) 数 2 できか ) wwwwww よって, 2 +(1-pn) +1=5 www (2) (1)より. Pn+1 2 5 15 3-5 1 は, n個の数字の和が 奇数である確率(余事象) 特性方程式 したがって、数列{po-12 初項 1 121 公比・ 25 2 10' の等比数列だから, n-1 10 2 5 よって | Focus 3 α= + より、α 2 初 公比rの等比数列の 一般項は a=ar"- n回目と(n+1)回目の試行に注目して漸化式を作る B151 袋から,それぞれ1個ずつ玉を取り出したとき, 赤玉が奇数個取り出される確 n個の袋の中に, それぞれ赤玉が1個, 白玉が9個入っている. これらn個の 練習 *** 率をとオスと次の問いに答えよ. (改)

解決済み 回答数: 1
数学 高校生

数1A 整数の性質 鍵括弧の範囲までは理解したのですが、それ以降の解説(どうしてあまりの数がわかるのか、矛盾すると言えるのか)よくわかりません。

基礎問 242 第9章 整数の性質 145 整数の余りによる分類 a+b2=c2 をみたす自然数a, b, c について, 次の問いに答えよ. (1)/ 自然数a, b, cのうち,少なくとも1つは偶数であることを 示せ. (2) 自然数a,b,c のうち,少なくとも1つは3の倍数であるこ とを示せ. (1) (a, b, c) の組をそれぞれが偶数か奇数かで分けると 2×2×2=8 (通り) ありますが,問題では,そのうちの 「 a,b,c はすべて奇数」は起こらないことを示してほしいといっています。 このようなとき、背理法 (24) が有効です。そのまま考えると示さなけれ ばならないこと (結論)は7つの場合ですが,否定すれば1つの場合しかな いからです.これは, 確率の余事象の考え方と同じです。 (2)原則的には(1)と同じですが 「少なくとも1つは3の倍数」を否定すると, 「すべて3の倍数でない」 となり,3の倍数でないことを式で表現する部分 が (1)より難しくなります。 3でわった余りが0, 12 (144) の3つなので3n, 3n+1, 3n+2と3 つに分けて考えますが,ここでは,必要なものが2乗なので 「2余る=1足 らない」と考えて3n, 3n±1 とおいた方が計算がラクになります. 参 注 だか りえ 3 3n (3 3で 考 すると, 場合を たと 4n と表せ 演習 解答 (1) a, b, c がすべて奇数とすると, d', b', c2 もすべて奇数だから,'+62は偶数(奇数)²=奇数 これは,d'+b2=c2 であることに矛盾する. 以上のことより, a, b, c がすべて奇数ということはない. すなわち, a, b, c のうち少なくとも1つは偶数である. (2) a, b, c がすべて3の倍数でないとすると, すべて3n±1 の形で表せる. (3n±1)2=9m²±6n+1 =3(3m²±2n) +1 演習問

解決済み 回答数: 1
数学 高校生

基本例題の方では、互いに素でない⇔素数を公約数にもつ、と書かれてあるのですが、Exercisesの方の問題では、公約数gが素数と書かれてありません。なぜなのか教えて欲しいです🙏

530 |基本例題 121 互いに素に関する証明問題 (2) 000 自然数 α, bに対して, aとbが互いに素ならば, a + b と abは互いに素である。 ことを証明せよ。 p.525 基本事項 2 重要 121 a+b abの最大公約数が1となることを直接示そうとしても見通しが立たない。 そこで,背理法(間接証明法)を利用する。 →a+b と ab が互いに素でない, すなわち, a+bとαbはある素数」を公約数 にもつ,と仮定して矛盾を導く。 なお、次の素数の性質も利用する。 ただし,m, n は整数である。 mn が素数 』 の倍数であるとき,またはnはかの倍数である。 1 最大公約数が1を導く CHART 互いに素であることの証明 背理法 (間接証明法)の利用 a+b と ab が互いに素でない, すなわち, a + b と αbは 解答ある素数を公約数にもつと仮定すると とnが互いに素で ない a+b=pk D, ab=pl ② と表される。 ただし, k, lは自然数である。 ...... mnが素数を 公約数にもつ ② から, α または は の倍数である。 α a=pmとなる自然数がある。 の倍数であるとき, = 1 このとき,①から,b=pk-a=pk-pm=p(k-m) となk-mは整数。 りもの倍数である。 (I+\)8=8+18=8+ (I+s)=( これはaとbが互いに素であることに矛盾している。(+0) Ict bがpの倍数であるときも,同様にしてαはの倍数であa=pk-b り,aとbが互いに素であることに矛盾する。 =pk-m') したがって, a+bとabは互いに素である。)=+ ( ' は整数) 参考 前ページの基本例題120 (2) の結果 「連続する2つの自然数は互いに素である」は,整数 の問題を解くのに利用できることがある。 興味深い例を1つあげておこう。 問題 素数は無限個存在することを証明せよ。 [証明] 2以上の自然数とする。 +1は互いに素であるから, n=n (n+1) は異な る素因数を2個以上もつ。 同様にして, n=n(n+1)=ni(n+1) (n2+1) は異なる素因数を3個以上もつ。 「この操作は無限に続けることができるから,素数は無限個存在する 素数が無限個存在す

解決済み 回答数: 1
1/22