学年

質問の種類

数学 中学生

この問題全部教えてください

10. 右の図のように,∠C=90°の直角三角形ABC で, ∠Bの二等分線と 辺ACとの交点をDとする。 点D から辺 AB へ垂線をひき、辺ABとの 交点をEとすると, BE=BC となる。 次の問に答えなさい。 NCB (対応順) E 【思考・判断・表現】(3点×2) (1)このことを証明するとき、どの三角形とどの三角形の合同をいえば よいですか。 B 'C 2つの角 (2) (1) を証明するときに使う三角形の合同条件を答えなさい。 11. 右の図のように,二等辺三角形ABC の長さの等しい辺 AB, ACの 中点をそれぞれM,Nとし, BN と CMとの交点をDとすると, △DBCは 二等辺三角形になる。このことを以下のように証明した。 」にあてはまるものを答えなさい。 【思考・判断・表現】 (2点×6) (証明) MBC と ANCB において, B 仮定から, AB=AC よって, MB=- 1/2AB NC=12121 MB= BC は共通 ア イ AB=AC で, 二等辺三角形の底角は等しいから, MBC=ウ ① ② ③ より [ I ]がそれぞれ等しいから, AMBC=ANCB したがって, <MCB= ∠ オ カ が等しいから, ADBCは二等辺三角形である。 12. 右の図の□ABCD で, BAD=78°,∠BEF=151°のとき, DFE の大きさを求めなさい。 【思考・判断・表現】 (3点) 13. ABCD の AB, DCの中点をそれぞれ M, Nとすれば, 四角形 MBND は平行四辺形になる。このことを証明しなさい。 【思考・判断・表現】 (6点) M D N A 月終) て 1180 97 83 180 QSC 1 2 178 180 151 151 29 C BE M N B

回答募集中 回答数: 0
数学 中学生

答えとどうやってといたかを教えて欲しいです!

2次の(1)から(3)までの問いに答えなさい。 (1)右の表は,ある中学校の陸上部に所属するAさん とBさんの走り幅跳びの記録を度数分布表にまとめ たものである。 この度数分布表から分かることについて正しく述 べたものを、次の①から⑤までの中から選んだとき の組み合わせを,下のア~コまでの中から一つ選び なさい。 階級 (m) Aさん Bさん 度数 (回) 度数(回) 以上 5.20~5.30 未満 1 2 5.30~5.40 3 5 5.40~5.50 4 2 5.50~5.60 5 5 5.60~5.70 6 7 5.70~5.80 2 4 5.80~5.90 4 5 計 25 30 (1 記録が5.50m 未満の回数は, Aさんの方がBさんよりも多い。 (2 記録が 5.50m 以上5.60m 未満の階級の相対度数は, AさんとBさんともに同じ値である。 (3 記録が 5.70m 以上の回数の割合は,Aさんの方がBさんよりも小さい。 ④ Aさんの記録の中央値は, Bさんの記録の中央値よりも小さい。 ⑤ Aさんの記録の最頻値は, Bさんの記録の最頻値よりも大きい。 ア ① 2 カ イ ① (3 ④ ② 5 ウク ウ ① ④ I 1, 5 3, 4 ケ③ ⑤ a (2)図で, 0 は原点, 2点A, B は関数y=- X (a は定数) のグラフ上の点である。 また, Cは x軸上の点である。 点Aの座標が (1, 2), 点B の x 座標が-2, 点Cのx座標が正である。 △ABCの面積が△OAB の面積の5倍になるときの点Cのx座標として正し いものを,次のアからエまでの中から一つ選びなさい。 5 ア 2 ウ 4 イ I 5 725 オコ ② 3 4, 5 B y y A a 28

回答募集中 回答数: 0
1/98