学年

質問の種類

数学 高校生

数A 三角形の性質 三角形の比、五心 この問題の赤く囲った部分と、波線を引いた部分がなんでそう書けるのかわかりません。教えてくださると嬉しいです!

460 基本 79 三角円,心 00000 次のこと △ABCの∠B,Cの外角の二等分線の交点をIとする。 このとき、 を証明せよ。 (1) Iを中心として,辺BC および辺 AB, AC の延長に接する円が存在する。 (2) ZAの二等分線は,点Ⅰ を通る。 指針 (1)点Pが∠AOBの二等分線上にある (類広島修道大 I から, 辺 BC および辺 AB AC の延長にそれぞれ垂線 IP, IQ IR を下ろし、これ ⇔点Pが∠AOB の2辺 OA, OB から等距離にあることを利用する。 らの線分の長さが等しくなることを示す。 (2) 言い換えると 「∠B, ∠Cの外角の二等分線と ∠Aの二等分線は1点で交わる ということである。 よって、 点Iが∠QARの2辺 AQ AR から等距離にあることをいえばよい。 なお, (1) 円を △ABC の 傍接円 といい, 点Ⅰを頂角 A内の傍心という。 Iから,辺BC および辺 AB, AC の延長にそれぞれ垂線 解答 IP IQ IR を下ろす。 (1) IB は ∠PBQ の二等分線であるから ICは∠PCRの二等分線であるから よって IP=IQ=IR なぜこう 1P=IQ> IP=IR 3 B Q HA 基本 △ABCに 3AB+A 指針 解答 また, IP⊥BC, IQ LAB, IRICA であるから, I を中 心として,辺BC および辺 AB, AC の延長に接する円 が存在する。 (2)(1) より, IQ=IR であるから, 点Iは∠QARの2辺 AQ, AR から等距離にある。 ゆえに,点Iは QAR の二等分線上にある。 したがって, ∠Aの二等分線は, 点を通る。 冒榭 傍心・傍接円 [定理] 三角形の1つの頂点における内角の二等分線と、他の2つ 検討 の頂点における外角の二等分線は1点で交わる。 この点を1つの頂角内の) 傍心という。 また、 三角形の傍心を中 心として1辺と他の2辺の延長に接する円が存在する。 この円を, その三角形の傍接円という。 1つの三角形において, 傍心と傍接円は3つずつある。 なお,これまでに学習してきた三角形における外心, 内心、重心、垂 心と傍心を合わせて,三角形の五心という。 B

解決済み 回答数: 1
数学 高校生

解き方教えて欲しいです🙏答えは2枚目に載ってます🙇‍♀️

1 【知識技能】 瑛仁くんは三角形の五心についての特徴をまとめた。 当てはまるものをそれぞれの語群から選べ。 尚、 瑛仁くんは3歳 である。 瑛仁 「三角形の五心はある直線の交点なんだね!」 外心 内心 重心 垂心 傍心 どの直線の交点 [1] [2] [3] [4] [5] 語群 ⑩垂直2等分線 ①角の二等分線 ② 垂線 ③線 1つの角の二等分線と他の2つの角の外角の2等分線 ⑤ 2つの角の二等分線と他の1つの角の外角の2等分線 瑛仁 「おや! 1つしかないものと複数あるものがあるんだね!」 1つしかないものは [6] である。複数ある場合は複数選択してよい。 語群 ⑩ 外心① 内心② 重心 ③ 垂心 ④傍心 瑛仁 「おや! 三角形の内側や辺上にしか来ないものもあるんだね!」 三角形の内側や辺上にしかないものは [7] である。複数ある場合は複数選択してよい。 語群 ⑩ 外心 ① 内心② 重心 ③ 垂心 ④心 瑛仁 「おや! 正三角形では複数のものが重なるんだね!」 正三角形の場合重なるものは [8] である。 複数ある場合は複数選択してよい。 語群 ⑩ 外心 ① 内心② 重心 ③ 垂心 ④傍心 円の接線についても考えてみた。 瑛仁 「円の共通接線の本数で2つの円の関係が整理できるんだね!」 共通接線の本数 なし 1本 2本 3本 4本 2つの円の位置関係 [9] [10] [11]| [12]| [13] 語群 ⑩ 互いに外部にある①1点を共有する (外接) ② 2点で交わる ③ 1点を共有する (内接) ④一方が他方の内部にある

解決済み 回答数: 1
1/2