(1)
次の数の下位5桁を求めよ。
(ア) 101100
自
(イ) 99100
示 [類 お茶の水大]
基本1
(2)2951900で割ったときの余りを求めよ。
指針
(1) これらをまともに計算することは手計算ではほとんど不可能であり, また, それ
を要求されてもいない。 そこで,次のように 二項定理を利用 すると, 必要とされ
る下位5桁を求めることができる。
100
(ア) 101100= (1+100) 'OO= (1+102) 100
これを二項定理により展開し,各項に含ま
れる 10" (nは自然数) に着目して,下位5桁に関係のある範囲を調べる。
(イ) 99100=(-1+100)1=(-1+102) 100 として (1) と同様に考える。
(2)(割られる数) = (割る数)×(商)+(余り) であるから,2951 を900で割ったと
きの商を M, 余りを とすると, 等式 2951= 900M+r (M は整数, 0≦x<900) が成
り立つ。 2951(30-1) であるから,二項定理を利用して、 (30-1) を 900M+r
の形に変形すればよい。
(1) (7) 101100=(1+100) 100=(1+102) 100
(10)
答
=1+100C×102+100Cz ×10 +10°×N
=1+10000+ 495 × 10 + 10° × N
T
(Nは自然数 ?
この計算結果の下位5桁は,第3項 第4項を除いて
展開式の第4項以下を
とめて表した。
10"×N(N. nは自然
n≧5) の項は下位5桁
計算では影響がない。
も変わらない。
よって、下位5桁は 10001
100