学年

質問の種類

数学 高校生

波線を引いたところについて質問です なぜg>0になるのですか?

補足 0. 1次不定方程式の整数解が存在するための条件 6は0でない整数とするとき,一般に次のことが成り立つ。 +by=1 を満たす整数x,yが存在するαともは互いに素………(*) このことは, 1次方程式に関する重要な性質であり, 1次不定方程式が整数解をもつかど うかの判定にも利用できる。 ここで, 性質 (*)を証明しておきたい。 まず,⇒については,次のように比較的簡単に証明できる。 (*)のの証明] ax+by=1 が整数解 x=m, y=n をもつとする。 また,aとbの最大公約数をg とすると a=ga', b=gb′ と表され am+bn=g(a'm+6'n)=1 g=1 よって,gは1の約数であるから したがって,aとは互いに素である。 ◆aとbの最大公約数が 1となることを示す方 針。 p.397 基本例題 103 (2) 参照。 α'm+b'n は整数, g>0 433 一方の証明については,次の定理を利用する。 4章 aとbは互いに素な自然数とするとき, 6個の整数 a1,a2, a 3, ・・・..., ab をそれぞれ6で割った余りはすべて互いに異なる。 証明 i, jを 1≦i<j≦b である自然数とする。 ai, aj をそれぞれ6で割った余りが等しいと仮定すると背理法を利用。 aj-ai=bk (k は整数)と表される。 よって a(j-i) =bk 差が6の倍数。 aとは互いに素であるから, j-iはもの倍数である。... ①p, gは互いに素で, pr しかし, 1≦j-i≦b-1 であるから, j-iは6の倍数にはな がqの倍数ならば, rは gの倍数である(p,a, rは整数)。 5 らず,①に矛盾している。 est したがって,上の定理が成り立つ。 t [(*)のの証明] 15 ユークリッドの互除法 aとbは互いに素であるから,上の定理により6個の整数α・1,上の定理を利用。 a•2, a·3,......., ab をそれぞれ6で割った余りはすべて互いに 異なる。 ここで,整数を6で割ったときの余りは 0, 1, 2, 6-1のいずれか(通り)であるから, akをbで割った余りが 1となるような整数ん (1≦k≦b)が存在する。識は akをbで割った商を1とすると ak=6l+1 すなわち ak+6(-1)=1 よって, x=k, y=-l は ax + by = 1 を満たす。 すなわち, ax+by=1 を満たす整数x, y が存在することが示 された。 このような論法は, 部屋 割り論法と呼ばれる。 詳しくは次ページで扱 ったので、読んでみてほ しい。

未解決 回答数: 1
数学 高校生

大問のなかで同じ文字を使う場合問題番号が違くても「'」をつけて区別した方がいいのでしょうか? (1)でBを使って(2)でもBを使うなど

338 第9章 整数の性質 応用問題 1 正の整数a,bに対してaをbで割った商をg,余りをとする.つ まりり a=bq+r が成り立つとする.このとき,以下が成り立つことを示せ . (1) aとbの公約数をdとすると,dはbとの公約数でもある. (2) bとの公約数をd' とすると,d' はaとbの公約数でもある. (3) aとbの最大公約数ともとの最大公約数は一致する. コメ P るも 持つ る」 る持る数は素 数 精講 ユークリッドの互除法の 「核」 となるp336の(*) を証明してみま しょう.考え方としては, 「α ともの公約数」 と 「bとrの公約数」 が(集合として)一致することを示そうというものです.それがいえれば当然, それぞれの最大公約数も等しいといえます. 解答 (1) αとの公約数がdであるから, (Res) bog a=dA, b=dB (A, B は整数) とおける.このとき r=a-bg=dA-dBg=d(A-Bg) dx (整数) なので,rはdの倍数である. (bもdの倍数でもあるので,)dはbとrの公 約数である. (2)との公約数がd' であるから, b=d'B',r=d'R (B', R は整数) とおける.このとき a=bg+r=d'B'q+d'R=d'(B'q+R) d'x (整数) なので, a は d' の倍数である. (bもd' の倍数でもあるので,d'はaとb の公約数である. αと6の公約数」は「brの公約数」と(集合として)一 致する.したがって,それぞれの最大公約数も等しくなるので、題意は示せ た.

未解決 回答数: 1
数学 高校生

この問題なんですが、modを使うとこの答えになったのですがこれは正しいですか?ばつですか?

Think 256 方程式の整数解(3) [ 不定方程式 57x+13y=1 の整数解を求めよ. (方 解答 例題255のように特殊解を求めたいが, 係数が大きいため実際に値を代入して求めるのは困難である。 57×(整数)+13×(整数)=1 の式をつくるために, ユークリッドの互除法を用いる. 方程式 57x+13y=1 ...... ① の係数 57と13について ユークリッドの互除法を用いる. 57=13×4+5 より 57-13×4=5 13=5×2+3 より 13-5×2=3 ......3 5=3×1+2 より 5-3×1=2 ・④ 3=2×1+1 より 3-2×1=1 ...... ⑤ 3 不定方程式 515 **** Ocus ⑤④を代入して, 3-(5-3×1)×1=1 3×2-5×1=1 これに③を代入して, (13-5×2)×2-5×1=1 13×2-5×5=1 5-3×1 3-②×1=1 AA(S)S S-V 13-5×2 (x)+ ③ ×2-5×1=0 13×2-(57-13×4)×5=1 これに②を代入して, したがって, ① - ⑥より 57×(-5)+13×22=1.... ⑥ x=-5,y=22が 57(x+5)+13(y-22)=0 57(x+5)=13(22-y) ...⑦ 57と13は互いに素であるから,x+5は13の倍数となる. したがって, んを整数として x+5=13k すなわち, x=13k-5 (S2) これを⑦に代入すると, 57k=22-y より, y=-57k+22 よって、 求める一般解は, ①の解の1つ とする 57×13k=13(22-y) Date - Jez 与えられた方程式の係数が大きい場合は,係数について 33 x=13k-5,y=-57k+22 (kは整数) ユークリッドの互除法を利用して考える 第9

解決済み 回答数: 2
数学 高校生

ユークリッドの互助法の式まではわかりますが、 代入して行くところからがよくわかりません わかる方テスト間際なので教えてください😢 よろしくお願いします!!

例題 311 不定方程式 〔8〕... 2元1次 (互除法の利用) 方程式 67x+107y=3 を満たす整数の組(x, y) をすべて求めよ。 思考のプロセス Wo Action 1次不定方程式は、 まず 1組の解を見つけよ しかし、 係数 67, 107 が大きく, 1組の解を見つけにくい。 Action» 1 次不定方程式の1組の解は,互除法を利用して求めよ 段階的に考える x,yの係数 67107 で互除法 107 = 67×1 + 40 67 = 40×1+27 40= 27×1+ 13 27 = 13×2+1 301 解 方程式 67x+107y = 3 例題 107 = 67×1 +40 より 67 = 40 × 1 +27 より 40 = 27 × 1 + 13 より 27 = 13×2+1 より ⑤ に ④ を代入すると これに ③ を代入して この両辺に3を掛けて 「余り」を残して ( 余り 107-67×1=40 67-40×1= 27 40-27×1=13 27-13×2=1 ① - ⑥ より 移項 67 + 107・ ⑦ に代入すると よって、求める整数の組は x=107n+24 y=-67n-15 67 × 24 + 107 × (−15) = 3 A B ... D 40-27×1=13 27-13×2=1 y=-67n-15 (最後⑩から始めて 「余り」を次々に代入) 27-13×2=1 40-27 ×1= |= 1 が得られる。 与式の右辺は3だが,どうすればよいか? (nは整数) D ・① の係数 67 と 107 について 107-67×1= 40 67-40×1= 27 (5) 27- (40-27 ×1) x2 = 1 てこの27 × 3+ 40 × (−2) = 1 ( 67-40×1) × 3+ 40 × (−2)=1 67 × 3 +40 × (−5)=1 さらに②を代入して 67×3+ (107-67×1) × (−5)=1 67 × 8 + 107 × (−5) =1 C ... B A ..6 67(x-24) +107(y + 15) = 0 67(x-24)=-107(y+15) 67 と 107 は互いに素であるから,x-24は107の倍数となる。 よって,x-24 = 107 (nは整数)とおくと x = 107n+24 67-40×1= 107-67×1 40 代入して数 (3) 例題 309 ユークリッドの互除法を 用いる。 ④ を代入して27と 整理する。 ③ を代入して 67 整理する Go Ahe 元1次 すなわち ( ② を代入して67 整理する 与式の右辺とそろえる。 (x, y) = (24, -15) 1組の解である。以下は 例題 309 の方法と同じ。 このこ まず最 (定) a $ それ NEE [

解決済み 回答数: 1
1/74