学年

質問の種類

数学 大学生・専門学校生・社会人

赤線部がわかりません。 左辺はK^2nの部分空間であるのに対し、右辺はK^nの部分空間であり、等しくならないように思います。

[重要] 例題058 行列を成分にもつ行列の階数 をn次正方行列とするとき、次の行列の階数を, rank A. rank B, Bを rank BA などを用いて表せ。行列 ZA, (1) [A A+B] Leonar E A (2) [54] B (U19) 脂針線形写像を導入するとよい。 その際,基本例題119の指針で扱った線形写像と次元の定理を 用いる。R (1) 行列 A.BをKの要素を成分にもつn次正方行列とし.C= [4 A+B] とする。 A 8dh6T+K=A\dasi+w= また行列 A,B,Cから決まる線形写像をそれぞれ fa: K"K", fs: K"→K", fc: Kin → K2n とする。 xEK", y∈K" に対し, Ker(f)={[x]|c[x]=0}であるとする。 c[*]=[^x+(A+B)y]-[4(x+3) + By] 53 ] であるから E Polo By y∈Ker (fb), x+y∈Ker(fa) A E (3) [15] B. xC [*] =Ker(0) Ker (fc) が得られる。 (fc) V19) dim Ker(fc)=dim Ker(fa) + dim Ker(f) よって したから ゆえに rankC=rank fc rank A-1ならば A=2n-dim Ker (fc) ここで,任意の y∈Ker (fb), zEKer (fa) に対し, x=z-y とおくと、任意の x=2- <Ker(fc) = Ker(fa) Ker(fB) "行列をXとして rank.AIであるならこ =2n-{dim Ker(f)+dim Ker(fs)} ne ={n-dim Ker(f)}+{n-dim Ker(fs)} amer =dimfa(K")+dimfs (K")_m)+ 百編 =rankfa+rankfp=rankA+rank B L 261 41

解決済み 回答数: 1
1/4