学年

質問の種類

数学 高校生

(3)で、なぜk+3は5を含まないのですか?

基本 例題 46 不等式で表される集合 実数全体を全体集合とし,その部分集合 A, B, C を A={x|-3≦x≦5}, B={x||x|<4}, C={x|k-7≦x<k+3} (kは定数)とする。古代 (1)次の集合を求めよ。 .109 2015 (ア) B (イ) AUB (ウ) ANB (2) ACCとなるkの値の範囲を求めよ。 /p.80, p.81 基本事項 1, 3, 5 指針集合の要素が離散的な値 (とびとびの値) でなく連続的な値であるときも,その集合を 視覚化するとよい。 この問題のように, 全体集合が実数全体の場合, ベン図ではなく、 集合を数直線で表すと考えやすい。 解答 その際,端点を含むときは,含まないときは を用いて, とくの違いを明確にしておく (p.63 参照)。 例えば, P={x|0≦x<1} は右の図のように表す。 CHART 集合の問題 図を作る (1)(ア)|x|<4から -4<x<4 よって, B={x|-4<x<4} であるから 0 1 x ー <x<c (cは正の定数) の解は -4 4 x -c<x<c B={x|x≦-4, 4≦x} (B={x||x|≧4} でもよい) (イ) A,B を数直線上に表すと, 右の図のようになる。 - よって AUB={x|x≦-4,-3≦x} (ウ) 右の図から BB- -A- -4-3 45 x <x<-4, 4<xは誤り。 端点を含まない範囲の集 合の補集合は,端点を含 む範囲の集合である。 ← ○ 補集合は ● A∩B={x|4≦x≦5} (2) ACC が成り立つとき, A, Cを数直線上に表すと, 右の図のようになる。 ゆえに, 全にk-7-35k+3x ACCとなるための条件は,804 ② k-7-3 ①,k+3>5 が同時に成り立つことである。 ①から k≦4 ②から k>2 共通範囲を求めて 2<k≦4 A (2) ①には等号がつくが ②には等号がつかない ことに注意。 k-7=-3 のときは,-3はAの要 素でもCの要素でもあ 。 +3=5のときは、 要素であるが Cの要素ではない。

解決済み 回答数: 1
数学 高校生

(2)なのですがなぜ<ではなく≦なのでしょうか? Aの範囲も含んで良いのですか? よろしくお願いいたします。

を 490. 基本 例題 38 (ア) ANB (イ) AUB (1) 次の集合を求めよ。 (2) ACCとなるんの値の範囲を求めよ。 2→3→△ 実数全体を全体集合とし, A={x|-2≦x<6}, B={x|-3≦x<5}, C={x|k-5≦x≦k+5}(kは定数) とする。 不等式で表される集合の歌 00000 は 370 370 470 B479 AUB 68 基本事項 1 CHART & SOLUTION 不等式で表された集合の問題 数直線を利用 集合の要素が不等式で表されているときは、集合の関係を数直線を利用して表すとよい。 その際,端の点を含む(≦, ≧)ときは● 含まない (<, >) ときは○ で表しておくと,等号の有無がわかりやすくなる (p.55 参照)。 例えば,P={x|2≦x<5} は右の図のように表す。 2 5 x 解答 (1) 右の図から (ア) A∩B={x|-2≦x<5} (イ) AUB= {x|-3≦x<6} (ウ) B={x|x<-3,5≦x} (エ) AUB={xlx<-3, -2≦x} (2)ACCとなるための条件は -B- -B- -3-2 56 x 2章 補集合を考えるとき 端の点に注意する。 〇の補集合は ● ●の補集合は○ 5 集 集合 C ・A k-5-2 ① k=1のとき x 6≦k+5 C={x|-4≦x≦6} (2 k-5-2 6 k+5 が同時に成り立つことである。esk=3のとき C={x|-2≦x≦8} UB ①から k≦3 ②から 1≦k であり、ともにACC 共通範囲を求めて 1≦k≦3 を満たしている。 8=0

解決済み 回答数: 1
数学 高校生

2番は直ぐに-1と出しちゃダメなんですか?

(1) 不等式α(x+1)> x+αを解け。ただし,αは定数とする。多く (2) 不等式 ax<4-2x<2xの解が1 <x<4であるとき,定数αの値を求めよ。 [(2) 類 駒澤大 ] ・基本 34 重要 99 指針 文字を含む1次不等式 (Ax>B, Ax <B など) を解くときは,次のことに注意。 ←一般に,「0 で割る」と •A=0 のときは,両辺を4で割ることができない。 ・4<0 のときは、両辺を4で割ると不等号の向きが変わる。 いうことは考えない。 (1) (a-1)x>a(a-1) と変形し, a-1>0, a1=0, a-1<0の各場合に分けて解く。 と同じ意味。 (2) ax<4-2x<2xは連立不等式 ax <4-2x 4-2x<2x (B) まず,Bを解く。 その解と A の解の共通範囲が1<x<4となることが条件。 CHART 文字係数の不等式 割る数の符号に注意 0で割るのはダメ! (a-1)x>a(a-1) (1) 与式から (1) 解答 [1] α-1>0 すなわちα>1のとき x>a >x [2] α-1=0 すなわち α=1のとき これを満たすxの値はない。 ①は 0x>0 [3] α-1<0 すなわち α <1のとき α>1のとき x>a, x<a よって a=1のとき 解はない, α <1のとき x<a (2) 4-2x<2x から -4x <-4 は まず, Ax>Bの形に。 ①の両辺をα-1 (>0) で割る。 不等号の向きは 変わらない。 <0> 0 は成り立たない。 負の数で割ると不等号 の向きが変わる。 晶検討 よって x>1 A=0のときの不等式 Ax>Bの解 ゆえに,解が1 < x < 4 となるための条件は, ax <4-2x ①から ① の解が x <4 となることである。 (a+2)x < 4 (2) [1] α+2>0 すなわち α> - 2 のとき ②から 4 x< よって a+2 ゆえに 4=4(a+2) よって 4 a+2 a=-1 =4 これはα>-2を満たす。 [2] α+2=0 すなわち α=-2 のとき,②は 0x4 = 0 のとき, 不等式は よって 0x >B B≧0 なら 解はない B<0 なら 解はすべての 実数 両辺にα+2 (≠0) を掛 けて解く。 よって,解はすべての実数となり, 条件は満たされな い。 [3] α+2<0 すなわち α <-2 のとき,②から 4 x> a+2 このとき条件は満たされない。 [1]~[3] から a=-1 04は常に成り立つか ら、 解はすべての実数。 x<4と不等号の向きが 違う。

解決済み 回答数: 1
数学 高校生

この問題の数列bnが等比数列となるための条件はの後の式が分かりません。どうして②の条件が 等比数列になるための条件なんですか?

0000 要 例題 47 分数形の漸化式 (2) 数列{an} が α1=4, an+1= 4an+8 an+6 で定められている。 16m= an-a an- とおく。 このとき, 数列 {bm} が等比数列となるようなα B (α>β) の値を求めよ。 (2) 数列{an} の一般項を求めよ。 本間も分数形の漸化式であるが, 誘導があるので,それに従って進めよう (1) bn+1= an+1-B an+1-a に与えられた漸化式を代入するとよい。 (2)(1)から,等比数列の問題に帰着される。 まず, 一般項6 を求める。 重要 46 485 1 出 章 ⑤種々の漸化式 ついて と変形できる 基本37 問題37 のように おき換えを利用 4an +8 辺のαを右辺 通分する。 0から。 答 (1) bn+1 an+1-B ・B an+6 = = an+1-a 4an+8 (4-β)an+8-6β a an+6 (4-a)an+8-6a_ (繁分数式) の扱い 分母, 分子に an+6を掛 8-6β an+ ( 4-B 4-B S = 4-a 8-6a ① ant 4-a けて整理する。 の分母を4-α 分 子を4-βでくくる。 ために, 数列 {bm} が等比数列となるための条件は )を断る。 から 8-6β 4-β =- -β, 8-6a 4-a D == a ② |_ ε bn = an-a an-β の右 島着。 よって,α,βは2次方程式8-6x=-x(4-x) の解であ り x2+2x-8=0を解いて x=2, -4 辺の分母分子をそれぞ れ比較。 (x-2)(x+4)=0 a>βから α=2, β=-4 (2) 4-β_ 4+4 4+4 - =4と ① ② から b+1=46 8-6β -=-β=4, 4-a 4-2 4-B 8-6α また b1= a+4 a1-2 =4 ゆえに b=44"-1=4" =-a=-2, 4-a 特性方 よって an+4 an-2 =4n ゆえに an= bn= 2(4"+2) 4"-1 an+4 an-2 (10+0 D-D D-T

解決済み 回答数: 1
1/69