学年

質問の種類

数学 高校生

図形と方程式の問題です (3)の色の着けたところがよく分かりません。点Pの1つが点Aであるのは何故ですか?解説読んでも分かりませんでした。

頂き を の 部 Y4 図形と方程式 (50点) 0を原点とする座標平面上に, 中心が点 (3, 1) でx軸に接する円Cがある。また、原 点からに引いた接線のうち,傾きが正であるものをとし,Cとlの接点をAとする。 (1) Cの方程式を求めよ。 (2) lの方程式を求めよ。 (3)は,中心がy軸上にあり,点AでCとlに接している。 Dの方程式を求めよ。ま 点PはD上の点であり, OP =3を満たしている。点Pの座標を求めよ。 配点 (1) 10点 (2) 18点 (3) 22点 解答 (1) Cの中心が点 (31) であり, Cはx軸に接するから,Cの半径は, C の中心のy座標に等しく, 1である。 x軸に接する円の半径は、円の 心のy座標の絶対値に等しい。 したがって, Cの方程式は (x-3)2+(v-1)2=1 圏 (x-3)2 +(x-1)²=1 (2) 解法の糸口 Cとl が接することを, 2次方程式が重解をもつ条件に読み替えて考える。 lは原点を通る傾きが正の直線であるから,その方程式は y=mx(m>0) と表される。 C と l が接するとき,これらの方程式からyを消去して得られるxの2次 方程式 (x-3)2+(mx-1)=1 は重解をもつ。 ①を整理すると (x2-6x+9)+(m2x2-2mx+1)=1 (m²+1)x2-2(m+3)x+9=0 ①'の判別式をDとすると2=0であり D 121=(m+3)2-9(m2+1)= 0 -8m²+6m=0 -2m (4m-3)=0 3 m = 0. 4 3 m>0より m = 4 したがって、lの方程式は y= [(2)の別解〕 (3行目まで本解と同じ) 3-4 3 y=x NA A ROS C EL 10 3 x ◆円と直線の方程式からyを消去し て得られるxの2次方程式を ax2+bx+c=0 とし、その判別式をDとすると, D=62-4ac であり 円と直線が接する ← 2次方程式が重解をもつ ⇔D=0 D また,b=26' のとき 1241=b2-ac

解決済み 回答数: 1
数学 高校生

例題56の解答(イ)で、なぜx=-2の時y=1とわかるんですか? 定義域と値域の領域をグラフに書き込んで斜線を書いてみましたが、この中ならどの点でも与えられた定義域と値域を満たせてしまうのでしょうか。

例題 56 値域からの1次関数の決定 ★★ 関数 y=ax+b (−2≦x≦1)の値域が1≦y≦ 7 であるとき、定数 α. bの値を求めよ。 (129) 《Action 関数の値域は、定義域の範囲でグラフをかいて考えよ 思考プロセス 場合に分ける (ア) a=0 (イ)a>0 y=ax+b (−2≦x≦1) の グラフを考えたいが,αの値 によって, 「右上がり」 か 「右下がり」か 「x軸に平行」 か変わるから、場合分けして y4 yA 例題 55 (ウ) a<0 34 思考のプロセス 2 0 1 x -201 x -20 1x x軸に平行 右上がり 右下がり 考える。 例 34 問題文では,単に「関数y=…」となっており, 1次関数とは限らない。と よって, α = 0 のときも考えなければならない。 Action 》 最高次の係数が文字のときは, 0かどうかで場合分けせよ 解 (ア) α = 0 のとき y=6 となり, 値域が 1≦y≦7 となることはない。 イ) α > 0 のとき 例題 55 値域が 1≦y≦7 となるのは, グラフ 2点 (-2, 1), (1, 7) を通るときで あるから 7 |1=-2a+b 17=a+b よって a=2,6=5 これは, a>0 を満たす。 201 x x 軸に平行な直線となる。 右上がりの直線となる。 例題 31 x = -2, y = 1 を代入する。 x=1,y=7 を代入する。 (ウ) α < 0 のとき。 例題 55 値域が1≦y≦7 となるのは, グラフ ●場合分けの条件を満た すかどうか確かめる 右下がりの直線となる。 2 (27), (1, 1) を通るときで あるから -- 7 20 17=-2a+b l1=a+b よって a=-2,6=3 これは, a <0 を満たす。 (ア)~(ウ)より, 求める α, 6の値は Ja=2 (a = -2 16=5, 16=3 練習 56 関数 y=ax+b (1≦x≦4) の値域が 1≦ys10 であるとき, 定数α, b の 値を求めよ 10- -20 1x x=-2,y=7 を代入する。 x1 = を代入する。 位 P 職場合分けの条件を満た すかどうか確かめる。

解決済み 回答数: 1
1/100