学年

質問の種類

数学 高校生

(1)と(2)の問題の等号成立ががよく分かりません

51 本 例題 29 不等式の証明 (絶対値と不等式) 00000 この不等式を証明せよ。 la+0|=|a|+|0| (2)|a|-|0|sla-61 p.42 基本事項 4. 基本 28 ■ART & THINKING 問題 1 結果を使う [2] 方法をまねる 絶対値を含むので、このままでは差をとって考えにくい。 AA' を利用すると、絶 計値の処理が容易になる。 よって、 平方の差を作ればよい。 証明したい不等式の左辺は負の場合もあるから, 平方の差を作る方針は手間がかかり -うである (別解 参照)。 そこで, 不等式を変形すると |a|≦la-6|+|6| - (1) と似た形になることに着目。 ■の方針で考えられそうだが, どのように文字をおき換えると (1) を利用できるだろうか? (|a|+|6|2-|a+b2=(|a|2+2|a||6|+|6|2)-(a+b)2 って =a2+2|ab|+62-(a² +2ab+62) =2(labl-ab)≧0 (*) la+6≦(|a|+|6|)2 in A≧0 のとき -|A|≦A=|A| A<0 のとき -|A|=A<|A| +6|≧0, |a|+|6|≧0 であるから la+6|≦|a|+|6| -lal≦a≦lal, -|6|≦6|6| であるから 々を加えて -(|a|+|6|)≦a+b≦|a|+|6| |a+6|≦|a|+|6| ■+|6|≧0 であるから [_1)の不等式の文字α を a-b におき換えて | (a-b)+6|≦la-6|+|6| って lal≦la-b|+|6| ゆえに |a|-|6|≦la-6| [1] |a|-|6|<0 すなわち |a|<|6| のとき 左辺) < 0, (右辺) > 0 であるから不等式は成り立つ。 |a|-6|≧0 すなわち |a|≧|6| のとき la-b-(al-16)²=(a-b)²-(a²-2|ab|+b²) =2(-ab+lab)0 よって (a-ba-b12 1-161≧014-0≧0 であるから |a|-|6|≦|a-6| であるから,一般に -ASASA 更にこれから JAI-A≧0 [A+A≧0 c≧0 のとき -c≤x≤c\x\≤c x≤-c, c≤x 1xc ②の方針 |a|-|0|が の場合も考えられる で、 平方の差を作るに 場合分けが必要。 int 等号成立条件 (1)は(*) から, lab|= すなわち、 αb0 のと よって、 (2) は (α-b) ゆえに (a-b≧0 かつ または (a-b0 かつ すなわち a b ≧0 ま a≦b0 のとき。 CTICE 29 [hs]alt[6] を利用して、次の不等式を証明せよ。 (?) |-cl≦la-6/+16-cl

解決済み 回答数: 1
数学 高校生

(2)の問題でなぜaをa-bにおきかえれるのでしょうか

次の不等式を証明せよ。 (1)[+0=|a|+|01 (2) a-ba-bl p.42 基本事項 基本 28 1 CHART & HINKING 似た問題 1 結果を使う 4 ② 方法をまねる 葬式・不等式の証明 絶対値を含むので、このままでは差をとって考えにくい。 JA=Aを利用すると、絶 対値の処理が容易になる。 よって、 平方の差を作ればよい。 (2)証明したい不等式の左辺は負の場合もあるから, 平方の差を作る方針は手間がかかり そうである(別解 参照)。 そこで, 不等式を変形すると |a|≦10-61+161← (1) と似た形になることに着目。 ①の方針で考えられそうだが,どのように文字をおき換えると (1) を利用できるだろうか? (1)(|a|+|6|2-|a+b=(|a|+2|a||5|+162)-(a+b)2 よって =α+2|ab|+62-(2+2ab+b2 ) =2(lab-ab)≧0 ...... (*) la+b=(al+161)2 |a+61≧0,14|+|6|≧0 であるから inf. A≧0 のとき -|A|SA=|A| A <0 のとき -{A}=A<|4| であるから,一般に a+b≤a+b 更にこれから lal≦a≦lal, -66であるから -ASASA 別解 辺々を加えて -(lal+16)≦a+b≦|a|+|6| |a|+|6|≧0 であるから la +6|≦|a|+|6| (2)(1) 不等式の文字αを α-b におき換えて (4-6)+6=la-6|+|6| よって|a|≦la-6|+|6| ゆえに |a|-|6|≦la-b 別 [1] |a|-|6|<0 すなわち |a|<|6| のとき (左辺) <0, (右辺) > 0 であるから不等式は成り立つ。 [2] |a|-|5|≧0 すなわち |a|≧|6| のとき la-b-(al-1b)²=(a−b)²-(a²-2|ab|+b²) よって =2(-ab+labl≧0 (a-ba-b12 |a|-|6|≦|a-6| lal-101≧014-0≧0 であるから A-A≥0, 1A+A c0 のとき exclxlsc x≤-c, c≤x ―xc ②の方針。 α|-bが負 の場合も考えられるの で、 平方の差を作るには 場合分けが必要。 in 等号成立条件 (1)は(*) から, lab=a すなわち, ab0 のとき よって, (2) は (a-b)& ゆえに (α-620 かつ または (a-b≦0 かつ すなわち ahのとき。

解決済み 回答数: 2
数学 高校生

25.2 指針の a-1=0かつb-1=0かつc-1=0 ↔︎(a-1)^2+(b+1)^2+(c+1)^2=0 の理由はこういうこと(赤ペンで書いたところ)ですか? また、記述はこれでも大丈夫ですか??

③の左辺は、 (x-y-z 々を加えて まず、結論を式で表すことを考えると,次のようになる。 (1)a,b,cのうち少なくとも1つは1である ⇔a=1 または b=1 またはc=1 式が得られる 循環形の り、引いた しやすくなる ■3:2 解答 3²+2¹+4 算することも =0⇒al 60m 例題25 29214 b,c は実数とする。 abc=1,a+b+c=ab+bc+caのとき, a,b,cのうち少なくとも1つは1 であることを証明せよ。 LOR$HOV.x.J a+b+c=ab+bc+ca=3のとき,a,b,cはすべて1であることを証明せよ。 (1) 20 CHART 証明の問題 結論からお迎えに行く -2+24+HP=(a-1)(b-1)(c-1) とすると 可能性がある a+b+c のとき、 all 少なくとも~, すべての〜の証明 ⇔a-1=0 または 6-1=0 または c-1=0 ⇔ (a-1)(b-1)(c-1)=0 (2) a,b,cはすべて1である⇔a=1 かつ6=1 かつc=1,2 ⇔a-1=0 かつ 6-1=0 かつc-1=0 ⇔(a-1)+(6-1)'+(c-1)=0 よって, 条件式から,これらの式を導くことを考える。 このように, 結論から方針を立て ることは、証明に限らず、多くの場面で有効な考え方である。 P=abc-(ab+bc+ca)+(a+b+c)-1 abc=1とa+b+c=ab+bc+ca を代入すると P=1-(a+b+c)+(a+b+c)-1=0 よって α-1=0 または 6-1 = 0 または c-1=0 したがって, a,b,cのうち少なくとも1つは1である。 Q=(a-1)+(b-1)'+(c-1)' とすると Q=a²+62+c²-2(a+b+c)+3 ここで,(a+b+c)=a+b2+c2+2(ab+bc+ca) であるから a2+62+c²=(a+b+c)²-2(ab+bc+ca)=32-2・3=3 ゆえに Q=3-2・3+3=0 よって α-1=0 かつ 6-1 = 0 かつ c-1=0 したがって, a, b c はすべて1である。 練習 a,b,c, d は実数とする。 25 1 1 (1) + + a b ことを証明せよ。 C = a+b+c fb H f d H f d ) 2 RESID tsutux ABC = 0 ⇔A = 0 または B = 0 または C=0 +d+o (1) Vio A²+B2+ C²=0 ⇒ A=B=C=0 CASAS) SI TATH Fan+ 2) - (1) Eln のとき, a,b,cのうち、どれか2つの和は0である ==c=d=1であることを証明 1章 5 等式の証明

未解決 回答数: 1
数学 高校生

演習β 第21回 5 (2)解説を見たら理解出来るんですけど、これを初見で解ける人は、例えばマーカー部分の式などをどういう考えで思いついてどんな考え方でこの問題を解いていくんですか?

に ASAS 5 [2011 新潟大] 実数 a, b, c に対して,3次関数f(x)=x3+ax2+bx+c を考える。 (1) f(-1), f(0), f(1) が整数であるならば,すべての整数nに対して, f(n) は整数 であることを示せ。 (2) f(2010), f(2011), f (2012) が整数であるならば,すべての整数nに対して, f(n) は整数であることを示せ。 [解答 (1) f(-1)=-1+α-6+c, f(0)=c, f(1)=1+a+b+c から f(1) -f(-1) 2 よって a= f(1)+f(-1) 2 - ƒ(0), b= f(n)=n³+an²2 + bn+c =1 2³ + {ƒ(1) + ƒ (−¹)_ _ƒ(0)}m² + {F(¹) −ƒ(−¹)_ _1]n+ f(0) 2 = 2 2 =f(1).. +n³-f(0)n²-n+f(0) n(n+1), (n-1)は連続する2つの整数の積であるから,いずれも偶数である。 よって, n(n+1)(n-1)n はいずれも整数である。 n(n+1) 2 (n-1)n 2 --1, c=f(0) - + f(−1).- 2 2 したがって, f(-1), f(0), f(1) が整数ならば,すべての整数nに対して, f(n) は 整数である。 (2) g(x)=f(x+2011) とすると g(x)=(x+2011)+α(x+2011)2 +6(x+2011) +c = x³ +a'x² +b'x+c' (a', b', c'() (2010), (2011), f(2012) が整数であるならば, g(-1), g(0),g (1) は整数で g(n-2011) = tem gi AC また ある。 よって, (1) で示したことから, すべての整数nに対して, g(n) は整数であることがい える。正が壁教ならば、すべてのいに対してdom)は整数、 したがって,すべての整数nに対して, g(n-2011) すなわち f(n) は整数である。

未解決 回答数: 1
1/11