学年

質問の種類

数学 高校生

囲った部分なぜ、式が変わるのか理解できません。 2k-1と2’k-1のやつです。

1 2 ZZZ 初項から第210項までの和を求めよ。 解答 指針 分母が変わるところで区切りを入れて,群数列として考える。 分母: 1|22|3, 3, 34, 4, 4,4|5, 1個 2個 3個 4個 第n群には、分母がnの分数がn個あることがわかる。 分子: 12,3|4,5,67, 8, 9, 10|11 分子は,初項 1,公差1の等差数列である。 すなわち,もとの数列の項数と分子 は等しい。 まず,第 210 項は第何群の何番目の数であるかを調べる。 分母が等しいものを群として,次のように区切って考える。 8 9 67 5 10|11 1 | 2 34 12'23'3' 3 4'4'4' 5 第1群から第n群までの項数は 1+2+3+ ・・・・..+n= n(n+1) =1/√n(n²+1)÷n=² n²+1 2 第210項が第n群に含まれるとすると (n-1)n <210≤ n(n+1) よって (n-1)n<420≦n(n+1) (n-1)n は単調に増加し, 19・20=380, 20・21=420 である から ① を満たす自然数nは n=20UH また,第 210 項は分母が 20 である分数のうちで最後の数 1/2 ・・20・21=210 である。 ここで,第n群に含まれるすべての数の和は 1/27 12.11/2n(n-1)+1}+(n-1)・1) ÷n ゆえに, 求める和は 20k2+1 20 2+¹ -12 +21)-(20-21-41 +20) ²² k=1 2\k=1 .=1445 k=1 [類 東北学院大 ] ...... 練習の累康を分母とする既約分数を,次のように並べた数列 ③ 30 13 2'4'4'8' 8 8 768.1/16 3 5 う " 16'16'16' について、第1項から第100項までの和を求めよ。 1 3 5 いて、 もとの数列の第k項 分子がんである。ま 群は分母が 個の数を含む。 これから第n群の の数の分子は、 n(n+1) は第群の数の分 子の和→ 等差数列の n{2a+(n-1)d} 15 1 16' 32 【類岩手大】 P.460 EX 自然委 (1) 大 料 (2) 1 る 指針

回答募集中 回答数: 0
数学 高校生

もう少し詳しく解説して欲しいです 1行目からよく分かっていません…… お願いします🙇‍♀️ ちなみに、青チャートP523の例題92です

るとき、 ak 既約分数の和 重要 例題 92 pは素数,m,n は正の整数でm<nとする。mとnの間にあって, pを分母と 00000 する既約分数の総和を求めよ。 ●それ以上約分できない分数 既約分数の和→ 全体の和 から 整数の和を除くという方針で求める。 ▽ まず, 具体的な値で考えてみよう。 例えば,2と5の間にあって3を分母とする分数は 7 8 9 10 11 12 13 14 3' 3'3 3 3' 3 3' 3 (*) であり,既約分数の和は(*) の和から3と4を引くことで求められる。 このことを一般化すればよい。 解答 9 Þ まずg を自然数として,m<<nを満たす を求める。 pm<g<pnであるから g_pm+1 よって g=pm+1,pm+2,.., pn-1 p D' これらの和をSとすると S₁= pm+2 p pn-pm-1 (m+n) 2 (pn−1)−(pm+1)+1(pm+1 + pn=1) 2 ⑩のうちが整数となるものは p _=m+1, m+2, これらの和を2 とすると S2= ………,n-1 pn-1 p (n-1)-(m+1)+1{(m+1)+(n-1)} -1/12/(m+n)(n-m)(b-1) 2 n-m-1(m+n) ゆえに、求める総和をSとすると, SS-S2 であるから S= n-m-1(m+n) pn-pm-1(m+n)-カー 2 -(m+n){(n−m)p−(n−m)} [同志社大] (*)は等差数列であり、3と4は 2と5の間にある整数である。 2 基本89.90 「mとnの間」であるから, 両端のとnは含まない。 pm+1 ① <初項 公差 1/1 p 等差数列。 45₁ = n(a+1) mとnの間にある整数。 ◄ Sn=½n(a+1) (全体の和) (整数の和) 523 3章 12 等差数列

未解決 回答数: 1