学年

質問の種類

数学 高校生

マーカーの部分を教えてほしいです。

92 重要 例題 54 1次関数の決定 (2) 関数y=ax-a+30≦x≦) の値域が 1≦y≦b であるとき,定数a, bo 値を求めよ。 CHART SOLUTION グラフ利用 端点に注目 1次関数 y=ax+b というと, α = 0 であるが,単に関数というときは, α=0 の場合も考えなければならない。 基本 この例題では,xの係数がαであるから α>0, a=0, a<0 の場合に分け て, 値域を求める。 ...... 次に,求めた値域が 1≦y≦b と一致するように a,bの連立方程式を作って解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか吟味する のを忘れずに。 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] YA [1] α>0のとき この関数はxの値が増加するとyの値も増加するから, x=2 で最大値 6, x=0で最小値1をとる。 よって a+3=b, -a+3=1 1 これを解いて a=2, b=5 これは, α>0を満たす。 a+3 0 2 x x [2] a=0 のとき この関数は y=3 定数関数 このとき, 値域は y=3であり、1≦y≦bに適さない。 [3] α <0 のとき 31. この関数はxの値が増加するとyの値は減少するから, x=0 で最大値 6, x=2で最小値1をとる。 ba+3 よって -α+3=b, a+3=1 これを解いて a=-2,6=5 これは, a<0 を満たす。 1 a+3 0 2 [1]~[3]から (a,b)=(2,5),(-2,5) PRACTICE・・・ 54 ③ (1) 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2)関数y=ax+b (b≦x≦b+1)の値域が-3≦ys5であるとき、定数a, bo 値を求めよ。 (3)関数y=ax+b (1≦x≦3)の最大値が最小値の2倍であり、グラフが点 (1,2 を通るという。 定数a, b の値を求めよ。

解決済み 回答数: 1
数学 高校生

(1)の解答の"軸はy軸"という部分がわかりません。

解答 86 基本 例題 48 2次関数のグラフの位置関係 次の2次関数のグラフは, 2次関数 y= x2 のグラフをそれぞれどのよう 00000 基本例題 に平行移動したものかを答えよ。また,それぞれのグラフにおける軸と を求めよ。 (1) y=1/2x+1 (2)y=1/2(x+2)2 (3)y=1/2/(x-4)2+2 1p.83 基本事項4 基本49 CHART SOLUTION 2次関数y=a(x-p2gのグラフ y=ax2 のグラフをx軸方向に, y 軸方向にだけ平行移動 軸は直線xp, 頂点は点(b,g) (1)~(3)の関数はすべてy=1/2x-p2gの形であるから,そのグラフは, 1 2次関数 y=x2 のグラフを平行移動したグラフである。 よって,(1)~(3)において, p, g を求めればよい。 (2)x+2=x-(-2) すなわち y=1/2(x-2)とする。 (1)y軸方向に1だけ平行移動したもの。 軸は軸, 頂点は点 ( 0, 1) (2)与えられた関数の式を変形して y=1/2(x-(-2)2 よって, x軸方向に-2だけ平行移動したもの。 軸は直線x=-2, 頂点は点(-2,0) 8116 p = 0 つまり,x軸方向 には移動していない。 なお, y 軸を 「直線 x=0」とも表す。 次の2次関数 (1) y=2x2- CHART 解答 2次関 平方完 軸は 一般に すると ことに (1) I (2) (1) 2x2-6- =2{(x =2(x- よって したが になる。 ◆ 「2だけ平行移動」 ではない! 軸方向に 4, y 軸方向に2だけ平行移動したもの。 x+2=x-(-2) 軸は直線x=4, 頂点は点(42) と考える。 (1)|| y y (3) y また, (2)-xz == -{( =-( よっ した にな また, 2 x -20 2 4 14 x i PRACTICE・・・ 48 2次関数y=-3(x+2)- のグラフをx軸方向に 直線

解決済み 回答数: 1
数学 高校生

(2) のベン図のBの部分に2と9が入るのはなぜですか?

解 64 基本 例題 35 2つの集合と要素 00000 (1) U=(1, 2, 3, 4, 5, 6, 7} を全体集合とする。 Uの部分集合 A={1, 4), B={2, 4, 5, 6} について, 集合 ANB, AUB, AUB を (2) 全体集合 U={x/1≦x≦10, xは整数} の部分集合 A, B について、 A∩B={3, 6, 8), A∩B={4, 5, 7}, A∩B={1, 10} とする。 求めよ。 このとき, 集合 A, B, AUB を求めよ。 CHART 集合の要素 OLUTION ベン図の活用 p.62 基本事項 1 基本38 集合に関する問題は,ベン図 (集合の関係を表す図) をかくとわかりやすい。......!! (1) まず, A∩B の要素を求めて図に書き込む。 そして, A,Bの残りの要素を 書き込んでいく。 (2)要素のわかっている集合 A∩B, ANB, A∩B が図のどの部分かを調べて、 その要素を図に書き込んでいく。 (1) A∩B={4} よって, 右の図のようになり B 2 A∩B A∩B={2,5,6} AUB={1,3,4,7} AUB={3,7} (2)条件から、右の図のようになり U A={1,3, 6, 8, 10} 4 1 B={2,3, 6, 8, 9} 5 10 7 AUB ={1,2,3,6,8,9,10} 2 3/6/8 6 AUB B 基本 例題 36 実数全体を全体集合 C={x|k-5≦x≦k (1) 次の集合を求め (ア) A∩B (2) ACCとなる CHART SOL 解答 不等式で表され 集合の要素が入 すとわかりやす その際、端の で表しておく 例えば,P= (1) 右の図から (ア) A∩B={x|- (イ) AUB={xl (ウ) B={xx<- (エ) AUB={x| (2) ACCとなる k-5-2 6≦k+5 が同時に成り立 ①から k≤ 共通範囲を求め INFORMATIO (2) において, ACC′ となる A AUB すなわち, 1 置する会体 PRACTICE... 35% ② (1)=1,2,3,4,5,6, 7, 8} を全体集合とする。 Uの部分集合 A={2,5, B={1, 3, 5} について, 集合 ANB, AUB を求めよ。 (2)1桁の自然数を全体集合ひとし その2つの部 A∩B={3, 9}, A∩B={2,4 Bを求めよ。 6) PRACTICE・・・ 3 B={x|-3< (1)次の

解決済み 回答数: 1
数学 高校生

(2)番についてです。6≦2a+5<7でなく6<2a+5≦7になるのはなぜですか?

54 基本 例題 31 1次不等式の整数解 00000 (2) 不等式 5(x-1) <2(2x+α) を満たすxのうちで,最大の整数が6であ (1) 不等式 6x+8(4-x) 5 を満たす2桁の自然数xをすべて求めよ。 るとき、定数αの値の範囲を求めよ。 CHART SOLUTION 1次不等式の整数解 数直線を利用 まずは、与えられた不等式を解く。 (1)不等式の解で、2桁の自然数であるものを求める。 基本で (2)不等式の解が、x<A の形となる。ここで,x<4を満たす最大の整数が6 であるということは, x=6 は x<A を満たすが, x=7 は x<A を満たさないということ。これを図 に示すと右のようになる。 A ズーム UP 不等 問題 m, nh max 例 (1) 6x+8(4-x)>5から ゆえにx2=13 -2x-27 2桁 -=13.5 は2桁の自然数であるから 14 10≤x≤13 10 11 12 13 13.5 x よって x=10, 11, 12, 13 (2) 5(x-1)<2(2x+α) から x<2a+5 ◆展開して整理。 ◆不等号の向きが変わる。 ◆解の吟味。 $3000 S 例 [1] 2 ① ◆展開して整理。 ①を満たすxのうちで最大の整数が6となるのは 6<2a+5≤7 のときである。 1<2a≤2 よって 1/12kas1 3 _RACTICE... 31 ③ 1) 不等式 x+ 2) 不等式 5(m 15 3 ① 6/2a+5<7 とか (6≦2a+5≦7 などとい 6 2a+57 x ないように等号の有無 に注意する。 注意 2 5-2 2 を満たす ①を満たす最大の整数 JO $50 > ◆α=1 のとき, 不等式は <7で、条件を満たす a = 1/2 のとき,不等式 $30 s> p <6で条件を満たさ ない。 ない」と答える 34 (2)-[0] 注意

未解決 回答数: 1
数学 高校生

黄チャートの数Aの例題26の(3)の問題で、写真の赤線をひいているところなんですけど、なぜ÷3ではなく、÷3!なのかわかりません。解説よろしくお願いします🙇‍♀️

298 基本 例題 26 組分けの総数 9人を次のように分ける方法は何通りあるか。 00000 (1)4人,3人,2人の3組に分ける。 ** (4)5人,2人,2人の3組に分ける。 (2)3人ずつ,A,B,Cの3組に分ける。 (3)3人ずつ3組に分ける。 [類 東京経大 p. 293 基本事項 CHART & SOLUTION 組分け問題分けるものの区別, 組の区別を明確に まず,「9人」は異なるから、区別できる。 1 「3組」 は区別できるが,(3)の「3組」 は区別できない。 (1)3組は人数の違いから区別できる。 例えば, 4人組を A, 3人の組を B, 2人の組をC とすることと同じ。 (2)組に A,B,Cの名称があるから, 3組は区別できる。 (3)3組は人数が同じで区別できない。 (2) で, A, B, Cの区別をなくす。 → →3人ずつに分けた組分けのおのおのに対し, A, B, C の区別をつけると,異なる3個 の順列の数 3! 通りの組分けができるから,[(2)の数]÷3! が求める方法の数。 (4)2つの2人の組には区別がないことに注意。 解答 (1)9人から4人を選び,次に残った5人から3人を選ぶと, (1) 2人,3人,4人の順に 残りの2人は自動的に定まるから, 分け方の総数は 9.8.7.6 5.4 9C4X5C3= =126×10=1260 (通り) 選んでも結果は同じにな る。 よって, C2 ×2C と してもよい。 4・3・2・1 2・1 (2)Aに入れる3人を選ぶ方法は9C3通り Bに入れる3人を,残りの6人から選ぶ方法はC 通り Cには残りの3人を入れればよい。 よって、分け方の総数は 5 9C3×6C3=- 9・8・76・5・4_CLASS =84×20=1680 (通り) 3.2.1 3.2.1 (3)(2) で,A,B,Cの区別をなくすと、 同じものが3! 通り ずつできるから, 分け方の総数は [] (C3×6C3)÷3!=1680÷6=280 (通り) (3) A B C [S] [E] abc def ghi A, B, C abc ghi def の区別が なければ (4)A(5人),B(2人), C (2人) の組に分ける方法は+ ghi def abc 同じ。 9C5×4C2 B,Cの区別をなくすと, 同じものが2!通りずつできるか ら,分け方の総数は ( 9C5×4C2)÷2!=756÷2=378 (通り)

解決済み 回答数: 1
数学 高校生

統計の母比率の問題です!! sを使って解く方法とR(1ーR)を使って解く方法はどのような違いがあるのでしょうか?

宮城大 第6問(選択問題) 次の問題を解答するにあたっては、必要に応じて次ページの正規分布表を用いてもよい。 ある県の全世帯から2500世帯を無作為抽出して、 ある意見に対する賛否を調べたところ, 1600 が賛成であった。このとき、次の問に答えよ。 各世帯が賛成したとき1. そうでないとき0の値をとる確率変数を X とする。 抽出した大き 2500の標本についてのXの標本平均と標準偏差を求めよ。 この県の全世帯における賛成の母比率を 信頼度 95%で推定せよ。 結果は小数第4位を四 入して小数第3位まで記述せよ。 この県の全世帯における賛成の母比率を 信頼度 99%で推定せよ。 結果は小数第4位を四 五入して小数第3位まで記述せよ。 2024年度 後期日程 6 150 1.25 96 25 -50 184 3 10.230 400 625 256 400-256 0.2 92 30k R 125 144 625 605 標準偏差は 500 256 R-1.96× T SE R+196xjn RT 0,2304 25 625 12 S= 12 (2 S= 125 1625 12 144 125×25 h=2500 0.6210.659 20246 カテゴリーで知りたい! EXERCISES 母比率の推定 信頼区間の幅 本 例題 77 大学で合いかぎを作り、そのうちの400本を無作為に選び出し調べたと ころ8本が不良品であった。合いか全体に対して不良品の含まれる 率を95%の信頼度で推定せよ。 00000 A (弘前大) (2)ある意見に対する賛成率は約60%と予想されている。この意見に対す る賛成率を,信頼度95%で信頼区間の幅が8%以下になるように推定した い。 何人以上抽出して調べればよいか? HART & SOLUTION の式における差 標本の大きさが大きいとき、標本比率を R とすると、 母比率に対する信頼度95% の信頼区間は p.467 基本事項 ホットニ 間違え R(1-R) R(1-R) NG R-1.96 n R+1.96 「R(1-R) n R(1-R) よって、信頼区間の幅は 1.96. -1.96 n n 解答 4 (1) 標本比率 R= =0.00. (1-R) =0.007 400 9 母集団と標本 10 指定 59 1個のさいころを150回投げるとき、出る目の平均をXとする。 Xの 待値,標準偏差を求めよ。 72 600 平均m, 標準偏差 の の正規分布に従う母集団から4個の標本を抽出すると 471 その標本平均Xがm-oとm+g の間にある確率は何%であるか。 73 20 推 E 61 母標準偏差の母集団から、大きさの無作為標本を抽出する。 ただし、 nは十分に大きいとする。 この標本から得られる母平均mの信頼度95% 10 の信頼区間を A≧m≦Bとし, この信頼区間の幅ムをL=B-A で定 める。この標本から得られる信頼度99%の信頼区間を Cám≦D とし、 この信頼区間の幅LをLD-Cで定めるとが成り立つ。 また、同じ母集団から, 大きさ 4nの無作為標本を抽出して得られる母平均 mの信頼度 95%の信頼区間を Em≦Fとし、この信頼区間の幅を L=F-Eで定める。このとき が成り立つ。 は小数第2位を四捨五入して、小数第1位まで求めよ。 [センター試験] 76 62 弱い酸による布地の損傷を実験するのに、その酸につけた布地が使用に面 えなくなるまでの時間を測ることにした。 このようにして、与えられる 違わないことが

解決済み 回答数: 1
数学 高校生

この問題の(2)の赤線の部分なのですが、条件付き確率なので公式に入れて求めてみたら値が違うものになりました。多分矢印で書いた方の求め方なのですが、どうしてそうなるのかを教えていただきたいです。

V 基本 例題 53 確率の乗法定理 (1) 00000 当たりくじ4本を含む12本のくじがある。 引いたくじはもとに戻さないも のとして,次の確率を求めよ。 (1) A,Bの2人がこの順に1本ずつ引くとき, AもBも当たる確率 (2) A,B,Cの3人がこの順に1本ずつ引くとき,Cだけがはずれる確率 p.340 基本事項 2 CHART & SOLUTION Hom .... もとに戻さないでくじを引く場合の確率 乗法定理を適用 ・・・・・・ 0 引いたくじはもとに戻さないから,前に引いた人の「当たり」 または 「はずれ」により、次 に引く人の「当たり」 または 「はずれ」 の確率が変わってくる。 解答 A, B, C が当たる事象をそれぞれ A, B, C とする。 ① (1) 求める確率は P(A∩B)=P(A)PA(B) Aが当たる確率 P(A) は P(A)=4 12 Aが当たったとき, 残りのくじは11本で当たりくじ3本 を含むから,条件付き確率 PA (B) は よって PA(B)=- 3 11 P(A∩B)=1/23 = 3 11 11 I C 確率の乗法定理。 当たりくじは3本。 (2) 求める確率は P(A∩BNC)=P(A∩B) PanB (C) 条件付き確率 PanB(C) は, A, B が当たったとして,次に Cがはずれるときの確率であるから 8 PanB (C)=- 10 よって, (1) から ◆ A, B は当たる。 ←このときCは、残りのく じが10本で,当たりく じを2本含むものから くじを引く。 P(A∩B∩C)=P(A∩B)Pana(C)=1/1×20 4 55 P(A∩B)=1/1 INFORMATION 確率の乗法定理の解答について

解決済み 回答数: 1
数学 高校生

数IIの問題です 棒線部分の一致するときを どうして考えないといけないのでしょうか 対象な点と問題にあるので、点PとQは一致する場合を考える必要はあるのでしょうか

例題 100 直線に関する対称移動 x+y=1 に関して点Qと対称な点をPとする。 点Qが直線 2y+80 上を動くとき、点Pは直線[ CHART & SOLUTION 対称 直線に関して PとQが対称 [[1] 直線 PQ がに垂直 [2] 線分 PQ の中点が上にある 上を動く。 000 基本 Qが直線x-2y+80 上を動くときの, 直線 l x+y=1 に関して点Qと対称な点 Pの軌跡、と考える。 つまり, Q(s, t) に連動する点P(x, y) の軌跡 ①s, tax,yで表す。 ②x,yだけの関係式を導く。 直線x-2y+8=0 ...... ① 上を動く点をQ(s, t) とし, 直線 x+y=1 2 に関して点Qと対称な点を P (x, y) とする。 4」 inf線対称な直線を求め ①るには、 EXERCISES Q(s,t) あるが、左の解答で用いた 軌跡の考え方は、直線以外 71 (p.137) のような方法も 1 の図形に対しても通用する [1] 点PとQが一致しない とき, 直線 PQ が直線 ② に垂直であるから -8 01 /P(x,y) t-y.(-1)=-1 垂直傾きの積が一 S-XC 線分 PQ の中点が直線②上にあるから x+y+t=1 2 2 ④ s-t=x-y ④から ③から s+t=2-(x+y) s, tについて解くと s=1-y, t=1-x また,点Qは直線 ①上の点であるから ⑤⑥に代入して すなわち s-2t+8=0 •••••• ⑥ (1-y)-2(1-x)+8= 0 2x-y+7=0・・・ ⑦ ] 点PとQが一致するとき, 点Pは直線 ①と②の交点 であるから x=-2,y=3 これは⑦を満たす。 なぜ一致するとき考える 上から, 求める直線の方程式は 2x-y+7=0 線分 PQ の中点の座標 (2/4) 上の2式の辺々を加え ると 2s=2-2y 辺々を引くと -21=2x-2 ← s, tを消去する 方程式①と②を させて解く。 BACTICE 100

解決済み 回答数: 1