学年

質問の種類

数学 高校生

少数のグラフはどうやって作るんですか?

462 基本 例題 71 標本平均の確率分布 00000 11,2,2,3の数字を記入した5枚のカードが袋の中にある。これを母集団 とし、無作為に大きさ2の標本X1, X2 を復元抽出する。 標本平均 X の確率 分布を求めよ。 CHART & SOLUTION p.459 基本事項 21 MOITUJO TRANS 標本平均は、標本の選び方によって値が変化する。 大 →標本の大きさを固定すると,標本平均Xは1つの確率変数となる。 確率を求めるときは、 同じ数字のカードは区別することに注意。 X1, X2のとりうる値とそ のときのXの値を表にまとめ、Xのとりうる値と各値をとる確率を調べる。 解答 5枚のカードの数字を 1 1 2 2′', 3 で表すと, 標本 (X1, X2)の選び方は全部で 52=25 (通り)集団 X=Xi+X2 の値を表にすると, 右のようになる。 2 したがって, 標本平均Xの確率分布は,次の表のよ うになる。 111223 1 1' 2 2' 3 1 1 1.5 1.5 2 1' 1 1 1.5 1.5 2 1.5 1.5 2 2 2.5 1.5 1.5 2 2 2.5 3 2 2 2.5 2.5 3 X 1 1.5 2 2.5 3 計 P 4 8 8 4 1 25 25 1 25 25 25 もつもの比 ものの割合を INFORMATION 標本標準偏差 p 母集団から大きさnの標本を無作為に抽出し, 変量xについて, その標本のもつxの 値を X1,X2, ..., Xn とする。 この標本を1組の資料とみなしたとき, その標準偏 S=12(X-X) を 標本標準偏差という。 Vnk=1 この例題において, 標本 (1, 3) の標本標準偏差は S=1/{(1-2)+(3-2)}=1 である。 標本平均 X=1+3=2 2 同時に取りま PRACTICE 71° 母集団 {0, 2, 2, 44, 4, 6 から, 無作為に大きさ2の る。 標本平均Xの確率分布を求めよ。 抽出す

解決済み 回答数: 1
英語 高校生

答えをなくしてしまって合ってるか分からないので間違えてる所があったら教えてください。お願いします。

<Exercise Lesson 8> 1.( )内に右の語群からもっとも適切な語を選び、適切な形に ①Ipractice( play ② I'm sure of Meg's ( weekend. ) tennis Pass) the entrance exam. ③ Taro had difficulty (solve the math problem.dart to noise take ogo play ④ Thank for ( kyou take ) care of my dog. pass solve brts Sno Juod 2. 日本語を参考に、空所に英語を書きなさい。 ① 中国語を読むことは、話すことよりも簡単です。 (Reading) (Chinese) is easier than (Jpeoking) it. ② ヨーロッパの歴史を学ぶ学生にとって、ローマは訪れる価値のある町です。 Rome is a city (worth)(visiting ) for a student studying European history. ③ ここに座ってもいいですか。 Would you mind ( my (ET takt (S) )( sitting ) here? nanobra nadoound on T ④ 今から5年後に何が起こるかわかりません。 There is ( no) ( telling ) what will happen five years from now. 3. 日本語を参考に英語を並べ替え、 全文書きなさい。 ① 私は子供のように扱われるのが大嫌いです。 (a/I/being / child / like / hate / treated ). I hate being treated like a child ② 私は母が数学の教員であることを誇りに思っています。 I (my / of / mother / am / a math teacher/being/proud). I am proud of being my mother a math teacher ③ 覆水盆に返らず。 (こぼれたミルクを嘆いても無駄です。) (crying/is/it/ nó / over / use) spilt milk. It is no use crying over spilt milk.

解決済み 回答数: 1
数学 高校生

高1数Ⅱです 大至急お願いします🙇 (1)の回答にマーカー部がいらないのはなぜですか?? (2)はあるのですが… 違いを教えてもらいたいです🫡

20 基本 例題 6 展開式の係数(2) (多項定理の利用) 00000 次の式の展開式における,[ ]内に指定されたものを求めよ。 (1)(x+y+z) [xy2z2 の項の係数] (2) (a+6-2c) [abic の項の係数] HART & SOLUTION (a+b+c)" の展開式の項の係数 n! 一般項 blg!r!ab°c, p+gtr=nを利用 p.13 基本事項 5 (a+b+c)"={(a+b)+c}” として考えることもできるが,その場合,二項定理を2回適用 する必要がある。←別解 を参照。 n! ので,スムーズ。 一般項 abc" を利用する場合,a,b,c, b,g,r,nにそれぞれ代入するだけな 解答 (1)xy2z2 の項の係数は 5! 1!2!2! 5.4.3 2・1 -=30 一般項は 別解{(x+y+z} の展開式において, 22 を含む項は 5C2(x+y322 5! p!q!!xyz p+g+r=5 また, (x+y) の展開式において, xy2 の項の係数は 3C2 よって, xy2z' の項の係数は xyの項は Czxye 5C2 ×3C2=10×3=30 (2) (a+b-2c) abcの項は 一般項は 7! 7! 7! -α2b3-2c)2= (-2)²a²b³c² 2!3!2! 2!3!2! p!q!r!ab(-2c) p+gtr=7 よって, abc2 の項の係数は 7! 7.6.5.4 -x(-2)²=- -×4=840 2!3!2! 2・1×2・1 別解 {(a+b)-2c} の展開式において, c2 を含む項は 7C2(a+b)5(-2c)²=7C2(-2)²(a+b)5c² また (a+b) の展開式において, α263 の項の係数は5C3の頃は よって, abc2の項の係数は 5C3a2b3 7Cz(-2)2×5C3=21×4×10=840 PRACTICE 6 次の式の展開式における, [ ]内に指定されたものを求めよ。 (1)(x+2y+3z) [xz の項の係数 ] (2) (2x-12y+z) [xyzの項の係数

解決済み 回答数: 1