学年

質問の種類

数学 高校生

下線部の水色の項数はどこからわかりますか?

例題 B1.8 既約分数の和 pは素数,m,nは正の整数でm<nとするとの間にあって, p を分母とする既約分数の総和を求めよ。 (同志社大) 解答) STAND 考え方 具体的な数で考えてみる。たとえば2と4の間 (2以上4以下) にあって5を分母と する数は, 10 Focus 11 17 18 19 (-2). 15 12 13 14 15 (-3). 16. 5. 5. 5. 20 (4) 55555 5'5'5'5'5 m以上n以下でpを分母とする数は, mp (= m). p 1 等差数列と等比数列 つまり、2.2+1/32+1/3 ......, 2+- となり、初項2. 公差 1/3の等差数列になって 10 5 いる. 項数は分子に着目して 11 (=20-10+1) 個である. これらの和を求めて, そのうち既約分数にならないもの(整数) を引くとよい . S2=120 mp+1 mp+2 p Þ つまり、初項m 公差 等差数列となる。 Þ 項数np-mp+1, 末項nであるから, その和S, は, S=1/12 (np-mp+1)(m+n)……① 1/² (n=m+1) (m+n) ......2 ....... 注 素数を分母とする真分数の和は, 12. p p よって、求める和をSとすると, ①, ②より、合 S=1/12 (np-mp+1)(m+n)-1/21(n-m+1)(m+n) + np-1 np (= p p また,このうち, 既約分数でない数は整数であるから, m,m+1,m+2, ......,n-1, n つまり,初項m, 公差1の等差数列となる. [ 項数n-m+1, 末項nであるから、その和 S2 は, としてもよい。 =1/(m+n)(np-mp+1-n+m-1) =1/12 (m+n)(n-m)(b-1) MD_R... 具体的な数で調べて規則性をみつける P (29) (=n) 1+2+ ...... p **** LED まずはすべての分数の 和を求める . (p-1)p か B1-11 公差の等差数列 p 項数をkとすると, n=m+(k-1) -1 1/13より、 k=(n-mp+1 だから, S₁=((n-m)p+1} -1) X (m+n) 分母が素数であるから, 既約分数でないものは mからnまでの整数に なる. 項数n- (m-1) S から S2 を引けば, 既約分数の総和となる. S=S-S2 練習 mnは自然数でm<nとする.mとの間にあって5を分母とするすべての B1.8 有理数のうち、整数にならないものの総和を求めよ。 (富山大) *** 200 bw== B1 B2 C1 C2 13161 1) 190, 2. HMON

解決済み 回答数: 1
数学 高校生

至急お願いします🙇‍♀️ 数Aで、写真の赤いマーカー引いてる問題です。 解説の①の式たちはかろうじて理解できたのですが、どうして6個から3個とる重複組み合わせになるのか教えて頂きたいです!

一次の条件を満たす整数の組(a1, a2, A3, a4, α5) の個数を求めよ。 (2) 0≤a₁≤a2≤a3≤A4≤A5≤3 1) 0<a₁<a₂<a3<a4<a5<9 3) a+a+as+a+as≦3, ai≧0 (i=1,2,3,4,5) S 指針 (1) a1,a2,….……., as はすべて異なるから, 1,2, 個を選び, 小さい順に α1, a2, -> ........ 求める個数は組合せ C5 に一致する。 (2) (1) とは違って, 条件の式に≦を含むから, 0, 123の4個の数字から重複を許 して5個を選び, 小さい順に a1, az, α5 を対応させればよい。 求める個数は重複組合せ4H5 に一致する。 (3) おき換えを利用すると, 不等式の条件を等式の条件に変更できる。 3-(a+a2+as+α+α5)=6とおくと a1+a2+a3+ax+a+b=3 ← 等式 また a1+a2+ax+a+as≦3から 6≥0 よって、 基本例題 33 (1) と同様にして求められる。 ......... α5 を対応させればよい。 .......... に〇があると (1) 1,2, ******, 8の8個の数字から異なる5個を選び, 小検討 さい順に a1,a2,......., as とすると,条件を満たす組が 1つ決まる。 29002 字 5桁の敷 e8C5=gC3=56 (個) 1) よって, 求める組の個数は (2) 0,1,2,3の4個の数字から重複を許して5個を選び, 小さい順に a1,a2, ......, as とすると, 条件を満たす組 が1つ決まる。 よって, 求める組の個数は 4H5=4+5-1C5=8C5=56 (個) marks (3) 3-(a+az+as+α4+α5)=b とおくと+++ a+a2+ax+a+as+b=3, 0≤Y ..... D 6200 20 =Co+5C1+6C2+C3 =1+5+15+35=56(個) 8の8個の数字から異なる 5 a≧0 (i=1, 2,3,4,5),6≧0 よって, 求める組の個数は, ① を満たす0以上の整数の 組の個数に等しい。 これは異なる6個のものから3個取 る重複組合せの総数に等しく OQ 6H3=6+3-1C3=gC3=56 (個) WIRT a+a2+ax+ax+a5=k(R= 0, 1,2,3) たす 0 以上の整数の組(a1,a2,a3, a, α5) の数は 5Hkであ 5 Ho+5Hュ+5H2+5H3 るから 基本 32,33 (2)(3) は次のようにして 解くこともできる。 (2) [p.384 PLUS ONE の方法の利用] bi=ai+i(i=1, 2,3, 4, 5) とすると、条件は 0<b₁<b₂<b3<b<b<9 (1) の結果から 56個 と同値になる。 よって (3) 3個の○と5個の仕 切りを並べ,例えば, |〇|〇〇|| の場 合は (0, 1,020 ) を表すと考える。 このとき A|B|C|D|E|F とすると, A,B,C, D, E の部分に入る ○ の数をそれぞれ a2, a3, as, as とすれば, 組が1つ決まるから

解決済み 回答数: 1
数学 高校生

(ⅲ)の解説の前半の下から2行目「ただ一つだけ存在する」の意味がよく分からないのでどういうことか説明して頂きたいです💦

21 辺の長さの変化と三角比 (1) BC=2√/3 のとき、 △ABCにおいて, 余弦定理により (2√3)=AB2+4²-2・AB・4cos60° AB-4AB+4=0 (AB-2)² = 0 よって AB = '2 この AB+BC" = ACA が成り立つから、△ABCは∠B=90°の直角三角形 (①) である。1 (ii) BC=4 のとき, AC=BC=4 であるから △ABCは∠Cを頂角 とする二等辺三角形である。 よって, 底角は等しく∠A=∠B=60° である。このとき, ∠C=180° ∠A-∠B=60° である。 △ABC はすべての内角が 60° であるから, AB=BC=CA=4 の正三角 形 (⑩) である。 ( BC=2√3 のときと, BC4 のときを図示すると図1のように なる。 BCの長さをaとする。 2√3より大きく4より小さい値を考え, 点Cを中心として半径aの円をかくと, 図2のように直線ℓと2点 で交わり、このとき, 合同でない △ABCが2つ存在する (△AB,C, △ABC)。 0<a<2√3 となる △ABC は存在せず,a>4となる△ABCは ただ1つだけ存在するから,2√3 <a < 4 を満たす値を考え, BC=√15 (②) が適当である。 図1 60° 2√3 x sin ∠B よって ∠ABC=180°∠ABC したがって AC BC sin ZB sin ZA 4 B A B B2 図2において, △CB1 B2 は CB1 = CB2 の二等辺三角形であるから ∠CB1 B2=∠CB2 B1 (2) △ABCにおいて, 正弦定理により 7 sin 40° よって sin <B= B sin∠ABC = sin (180°∠AB2C) = sin ∠AB2C (①) cos∠ABC=cos (180° AB2C) =-cos∠AB2C (③) Point 図2 sin 40° 7 x C 2√3 37 ←B C A 2²+2√3)=4' である。 AB: AC:BC=1:2:√3 である ことからも, 直角三角形である ことがわかる。 ingr B (C 図形と計量 sin (180°-0) = sin0 cos (180°-0) = -cos (

回答募集中 回答数: 0
数学 高校生

287の青い線で引いたとろの÷2するのがなぜするのか分からないです。

6回通る選( 6Co+6C2+6C4+6C6 = 32 (通り) 287 方針 各校の生徒を1人ずつ別々になるように 2つのブロックに分ける。 1つのブロックでの対 戦が何通りあるか考える。 解答 4つの高校をA高, B 高,C高, D 高と し, A高の生徒を A1, A2 と表す。 (B高, C高 D高も同様) 8人を A1, A2, B1, B2, C1, C2, D1, D2 とする。 A1 と同じブロックに入る者を B1 ~ D2 から選ぶのに各高2名ずつの選び方があ るので2通り。 その組合せ方は 4C2×22÷2=3 より3通り、 他方のブロックの組合せも3通り。 よって 23×3×3=72 (通り) 288 方針 異なるn個のものから重複を許して個 取る組合せの公式 „Hy = +r-1C, にしたがって計 算する。 解答 (1) 展開式における項xはxを5個取っ た結果と考えることができ.xyはxを3個、 を2個取った結果と考えられる。 このことか ら,展開式の項の総数は x,y,zの3個のもの から繰り返し取ることを許して5個取る組合せ の総数より H6=C6=7C2=21 (項) (2) 求める総数は1から6までの異なる6個の数 から、繰り返し取ることを許して4個取る組合 せの総数に等しいから H=C=126 (通り) (3) まず最初にくだものを1種類ずつ入れてお き残りの5個のくだものについて3種類のう

解決済み 回答数: 1
数学 高校生

50が分かりません。 中点を求めるところまでは分かります。 L(0.0)M(a+c/2,b/2)N(a-c/2,b/2)までは分かります。 Mは(a+c/2,b/2)なのに、なぜBMは、-c+2(a+c/2)/2+1にならず、-c+(a+c)/2+1になるんですか?

基本事項6 (x2,32) AB 。 の中点となるようなaの値を求めよ。 座標平面上の3点A(-2, 5), B(-3,-2), C(3,0) がある。 (2) ∠ABCの二等分線と直線 AC との交点Pの座標を求めよ。 (1) 線分AB, BCの長さをそれぞれ求めよ。 (2) △ABCにおいて, 2AB' < (2+AC2)(2+BC2) が成り立つことを示せ。 50 (1) △ABCの3つの中線は1点で交わることを証明せよ。 1に内分する点 HINT 48 点 C, D の座標をそれぞれαで表す。 ミ [類 弘前大] →72.75 31 次の条件を満たす三角形の頂点の座標を求めよ。 (1)各辺の中点の座標が (1,-1),(2,4),(3, 1) (2)1辺の長さが2の正三角形で,1つの頂点がx軸上にあり,その重心は原点に 一致する。 - →75 P1年0年3 牛 それぞれ2:1に内分する点の座標をα, b, c で表す。 (2) 直線 AB をx軸にとり、点Cをy軸上にとると、計算がらく。 (2) 山形大 ] 52 3点A(a1,a2), B(b1, 62), C(C1, C2) を頂点とする △ABCにおいて、辺BC, CA, AB を m: n に内分する点をそれぞれ D, E, F とする。 ただし, m>0, n0 とする。 (1)3点D, E,Fの座標をそれぞれ求めよ。 (2) △DEF の重心と△ABCの重心は一致することを示せ。 na+mbi na₂+mb₂ m+n m+n →74 49 (2)角の二等分線の定理 AP: PC=AB: BC を使う。 50 (1) 直線BC をx軸にとり, A(α, b),B(-c, 0), C(c, 0) とする。次に、3つの中線を 51 (2)頂点の座標は、(a,0),1), (b,-1) とおける。 52 (1) 2点A(a, az, B(by, ba) を結ぶ線分 AB を minに内分する点の座標は →75 3章 2直線上の点、平面上の点

未解決 回答数: 0