学年

質問の種類

数学 高校生

この問題の自分の解答のどこが間違っているか教えてほしいです <解答> 共通解をx=αとおいて、方程式にそれぞれ代入すると 2α²+kα+4=0・・・① α²+α+k=0・・・② ①=②として代入法を用いる 2α²+kα+4=α²+α+k αについての二次方程式として整理す... 続きを読む

158 重要 例題 99 2次方程式の共通解 00000 2つの2次方程式 2x2+kx+4=0, x2+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 基本94 指針 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができたら、 その解を他方に代入することによって, 定数の値を求めることができる。 しかし、例題の 方程式ではうまくいかない。このような共通解の問題では,次の解法が一般的である。 2つの方程式の共通解を x=αとおいて, それぞれの方程式に代入すると 0-a 2a2+ka+4=0 ...... D, a2+a+k=0 これをα, kについての連立方程式とみて解く。 ......... ② ②から導かれる k=--αを①に代入 (kを消去)してもよいが, 3次方程式となって 数学Iの範囲では解けない。 この問題では,最高次の項であるα2 の項を消去することを 考える。 なお,共通の「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=α とおく 解答 共通解を x=α とおいて, 方程式にそれぞれ代入すると ...... ①, a2+α+k=0 (k-2)a+4-2k=0 2a2+ka+4=0 ① ①-②×2 から ゆえに k=2 または α=2 よって [1] k=2のとき (k-2)(a-2)=0 ② 2つの方程式はともに x2+x+2=0となり,この方程式の判 別式をDとすると D=12-4・1・2=- D<0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 金融対美 α2 の項を消去。 この考え 方は, 連立1次方程式を加 減法で解くことに似ている。 数学Ⅰの範囲では, x2+x+2=0 の解を求める ことはできない。 SI- [2] α=2のとき ②から 22+2+k=0 よって k=-6 =2を①に代入してもよ このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 となり, 解はそれぞれ x=1,2; x=2, -3 よって、 2つの方程式はただ1つの共通の実数解 x=2をも ※2のとき い。 つ。 以上から k=-6, 共通解はx=2 注意 上の解答では,共通解 x=αをもつと仮定してやkの値を求めているから,求め た値に対して,実際に共通解をもつか,または問題の条件を満たすかどうかを確認 しなければならない。 ·S) + x

解決済み 回答数: 1
数学 高校生

数2 図形と方程式の2直線の交点を通る直線についての質問です。 マーカー部分はなぜこのような式が出てくるのでしょうか。成り立つことは理解できますが、どのように考えたらこの式が出てくるのか教えていただきたいです。 よろしくお願いします🤲

研究 2直線の交点を通る直線 (火 Link 2直線 x+2y-4=0 ...... ①, x-y-1=0 考察 わる。その交点をAとする。 k=1 y ②は1点で交 k=0 ここで, kを定数として, 方程式 5 k(x+2y-4)+(x-y-1)=0 2 ③ k=-1 A を考える。 点Aは直線上にあり,かつ 直線 ②上にあるから, kがどんな値をと O 1 -1 4 x っても、③の表す図形はAを通る。 10 ③ を整理すると (k+1)x+(2k-1)y-4k-1=0 S 15 係数k+1,2k-1は同時に0になることはないから, ③はx,yの 1次方程式である。したがって, ③は2直線 ①②の交点を通る直線を 表す。 ただし, 直線 ①は表さない。 例 上の2直線 ①②の交点と, 点 (0, 3) を通る直線の方程式を求め 1 てみよう。 kを定数として k(x+2y-4)+(x-y-1)=0 とすると, ③は2直線の交点を通る直線を表す。 直線③が点 (0, 3) を通るから, ③ に x = 0, y = 3 を代入して 2k40 よって k=2 (S-1) 20 これを③に代入して整理すると x+y-3=0 終 練習 1 2直線 2x-y+1=0, x+y-4=0 の交点と,点 (-2,1)を通る直 線の方程式を求めよ。 .10 (SD) (1) |深める を定数とする。 (x+2y-4)+1(x-y-1)=0 ④とするとき,③が表すこ とのできる図形と④が表すことのできる図形は同じだろうか。

解決済み 回答数: 1
数学 高校生

なんで2番の問題はK=0とかあるんですか?

次のxについての方程式の解を判別せよ.ただし,kは実数と する. (1) 2-4x+k=0 精講 (2) kx²-4x+k=0 16-484 16-4k 「解を判別せよ」とは,「解の種類(実数解か虚数解か) と解の個数 について考えて,分類して答えよ」という意味です。ということは、 (1) (2)も2次方程式だから, 判別式を使えばよい!!」と思いたくな るのですが、はたして…...... 次のように分類できる. (i)4-k0 すなわち, k<-2,2<kのとき D<0だから, 虚数解を2個もつ (ii) 4-k=0 すなわち,k=±2 のとき D = 0 だから重解をもつ () 4-k20 すなわち, -2<k<2 のとき D> 0 だから, 異なる2つの実数解をもつ (ア)(イ)より, k= 0 のとき, 実数解1個 FOR 8 k<-2,2くんのとき, 虚数解 2個 k=±2 のとき,重解 2<k<0,0<k<2のとき, 異なる2つの実数解 注 (2)のk=0 の場合と k=±2 の場合は,いずれも実数解を1個も一 ているという意味では同じように思うかもしれませんが, 2次方程 の重解は活字を見てもわかるように元来2個あるものが重なった状態 を指し, 1次方程式の解は、元来1個しかないのです。 だから, 答案 は区別して書かないといけません. 仮に,「kx²-4x+k=0が異な 解をもつ」 となっていたら 「k≠0 かつ D≠0」 となります. 問題文の1行目をよく読んでください. 「次のxについての方程式・・・・・・」 とあります. 「次のxに いての2次方程式 ・・・・・・」とは書いてありません. よって, の方程式は k= 0 となる可能性が残されているのです. だから, のxについての2次方程式…………」 となっていたら、 すでに 「k≠0_ 前提になっていることになり, 解答の ) は不要となります. (1) 2-4x+k=0 の判別式をDとすると, D 4 =4-k だから. この方程式の解は次のように分類できる. (i) 4-k<0 すなわち, k>4のとき DO だから、虚数解を2個もつ D<0 (靴) (ii) 4-k=0 すなわち,k=4のとき D=0 だから,重解をもつ D=0 参考 (i) 4-k>0 すなわち, ん<4のとき <D>0 D> 0 だから, 異なる2つの実数解をもつ (i)~ (ii)より, k>4 のとき, 虚数解2個 k=4 のとき, 重解 しん<4のとき、 異なる2つの実数解 (2) (ア)=0 のとき k=0のときは1次 与えられた方程式は4x=0 (イ)のとさ .. x=0 kx2-4x+k=0 の判別式をDとすると D=4k だから、この方程式の解は 4 方程式なので判別式 は使えない ポイント 判別式は2次方程式でなければ使えないので, 2 数が文字のときは要注意 演習問題 17 (1) 2-(k+1)x+k2=0 を実数とするとき,次の2次方程式の解を判別せよ. (2) kx2-2kx+2k+1=0

解決済み 回答数: 1