学年

質問の種類

数学 高校生

囲ってある部分についてです。 なぜ(−1)n乗じゃないんですか?n−1乗になる理由を教えてください!

742/21☆ 基本 例題 42 2つの無限等比級数の和 (2-2)+(+2)+(3-2)+ 21/20よ 次の無限級数の収束, 発散を調べ, 収束すればその和を求めよ。出会 00000 +......+ ++(2)+ ...... P.64 基本事項目,基本 |指針 無限級数 まず部分和 ( )内を1つの項として, 部分和 S を求める IN ROO ぞれ求めよ。 (複数 D 43 ここで,部分和 S, は 有限であるから,項の順序を変えて和を求めてよい。 注意 無限の場合は、無条件で項の順序を変えてはいけない(次ページ参照)。 別解 無限級数 ∑an, Σbn がともに収束するとき, k, lを定数として 00 n=1 n=1 n=1 00 00 (kan+1b.)=kan+12bm が成り立つことを利用(p.64 基本事項)。 n=1 n=1 3人が1枚目、2枚 初項から第n項までの部分和を Sn とすると Sn=12+ 解答 S,= (2+//+//+..+)-1/2-12/3+/2/2 +・・・+ (-1)n-1 2n LIDE 1- 3 1-(-1/2) =3 の一部の金額を金者の よって |= lim Sn = 3.1-1.1=3 8 企業の貸し出しに 金を 3払いに当て、拡 ゆえに、この無限級数は収束して、その和は 8 別解(与式)=2371+ n=13" n-1 83 (-1)=1/2(1/2)^2+(-1/2)"} 22 ( 13 ) は初項 2.公比 1/3 の無限等比級数ne て 2(-1/2)は初項 - 121,公比-12 の無限等比級数 a Sは有限個の項の和な ので,左のように順序を 変えて計算してよい 。 初項α,公比rの等比数 列の初項から第n項ま での和は,r=1のとき a(1-r") 1-r で,公比の絶対値が1より小さいからこの無限等比級 無限等比級数 Mar 数はともに収束する。 ゆえに、与えられた無限級数は収束して, その和は その和は \n-1 1000 00-900 (7=1 2 === + は、 1- 3 として新たにお金を n n=1 の収束条件は a=0または|r|<1 ◆収束を確認してから 8 を分ける。 3 無限級数の収束, 発散を調べ, 収束すればその和を求めよ。 p.81 EX

解決済み 回答数: 1
数学 中学生

この36通りの意味がわからないです!教えて欲しいです!

○枚 この袋の中から玉を1個取り出すとき、青玉の出る確率 6個のうち2個 この袋の中から玉を1個取り出すとき、青玉の出る確率 出る確率は である。 4/9 出る確率は である。 さいころを続けて2回投げるとき、次の問いに答え なさい。(25点 各5点、知) 3 さいころを続けて2回投げるとき、次の問いに答え なさい。 (25点 各5点、 知) (1)起こりうるすべての場合は何通りあるか求めよ。 (1) 起こりうるすべての場合は何通りあるか求めよ。 36通り (2)出る目の数の和が8になる確率を 5 求めよ。 (2.6) (3.5)(44)(5.3)(62) の5通り 36 (2) 出る目の数の和が8になる確率を 求めよ。 (3)出る目の数の積が6以上になる確 率を求めよ。 (1.6)(2.3)(2.4)(2.5)(2.6) (52)-(5.6) 13 (3) 出る目の数の積が6以上になる確 率を求めよ。 (3.2)~(3.6) (4.2)~(46) (6.1)~(66) の26通り 18 26 (4)2回とも偶数の目が出る確率を求 36 めよ。(2,2) (2,4) (26) (4.2)(4.4)(4.6) (62)(6.4)(6.6)の9通り 4 36 (5) 1回目の出た目の数の方が2回目 に出た目の数より大きくなる確率を 5 求めよ。同数の場合…6通り 12 36-6 15- 2. =15(通り)なので36 (4) 2回とも偶数の目が出る確率を求 めよ。 (5) 1回目の出た目の数の方が2回目 に出た目の数より大きくなる確率を 求めよ。

解決済み 回答数: 1
数学 高校生

(2)で私はx=nから始めたのですが答えがどうしても合いません。nではダメなのでしょうか。教えて頂きたいです🙇

254 重要 例題 161 面積と数列の和の極限①①①①① 曲線 y=ex をCとする。 ・cos21. (1) C上の点P(0, 1) における接線とx軸との交点を Q とし,Qを通りx 軸に垂直な直線とCとの交点をP2とする。Cおよび2つの線分 PiQ1, QP2 で囲まれる部分の面積Sを求めよ。 (2)自然数nに対して, PrからQn, Pn+1 を次のように定める。C上の点P における接線とx軸との交点をQn とし, Qn を通りx軸に垂直な直線と C との交点をP1 とする。 Cおよび2つの線分 PQ QnPn+1 で囲まれる部 分の面積Sを求めよ。 00 n, たが、 (3) 無限級数ΣSnの和を求めよ。 [類 長岡技科大 ] n=1 基本153 CHART & SOLUTION (1) 曲線 y=f(x) 上のx=αの点における接線の方程式は y-f(a)=f'(a)(x-a) 面積S1 は, 0 を原点として 曲が をしている区間 =2 (Cおよび3つの線分P10, OQ1, QiP2 で囲まれる部分) (OPQ) と考えると求めやすい。 (2) Pr(an,e-an) とすると, 点P" における接線とx軸との交点のx座標, すなわち, 点 Q のx座標が、点P+1 の x 座標 α+1 と等しいことから, 数列{a} の2項間漸化式を作る ことができる。 これから一般項 αn が求まり, (1) と同様に定積分を計算することで、面積Sを求めるこ とができる。 (3) 数列 {Sn} は等比数列となるから、無限等比級数の和を考えることになる。 常に y20 解答 A-CO -sin2=ipint-asin (1) -x y = e¯x 5 v' ==-x ib VA 20, cos から

解決済み 回答数: 1