学年

質問の種類

英語 高校生

量が多くて申し訳ないです。 19、25、26は何が当てはまるのでしょうか。 また書いてあるところは合ってますか? よろしくお願いします。

口07 Mr. Bell is the person ( )I obtained the information. の for what 2 from whom 3 with whose の to who 〈法政大) )I referred The professor sternly told the student, “Read the passage in my lecture." O that |08 2 to that 3 to which のwhich (センター試験) )you spent your childhood years? 3which 口09 Do you remember the house ( Owhere 2when の of which 〈芝浦工業大) 口10 Ghibli Museum is a place ( )I want to visit. のwhere 2 to where 3 to which の which 〈杏林大) He has been in the hospital for two weeks. That's ( today. ) he can't come O because 2 how 3why の the way 〈東京電機大) 口12 He talked about one of Salinger's novels ( ①which )I can't remember the title. whose 3whatever の of which 〈防衛大学校) 口13 He said he couldn't speak Russian, ( )was untrue. Owhich 2what 3why の how 〈名古屋外国語大) 口14 There are often special box seats at sports stadiums, ( watch games with food and drinks. )people can Owhere 2wherever 3which のwhichever 〈日本大) 口15 There was no objection from the man ( のof whom )I thought was sure to protest. 2 on whom 3who の by whom く桜美林大) 16 Last winter I went to Hong Kong, ( as warm as I had expected. Owhen wasn't 2where it wasn't where wasn't ④which it wasn't くセンター試験) 口17 seems easy at first often turns out to be difficult. O It 2 That 3 What の Which くセンター試験) The school is quite different from ( )it was ten years ago. (Owhich 2 that 3 as のwhat 〈東京経済大)

解決済み 回答数: 1
数学 高校生

白チャート数学Ⅲの「ド・モアブルの定理」の問題です。 赤い四角の部分が疑問点です。 赤い四角には「z=cosθ+ℹ︎sinθと置く」と書かれていますが、 z=r(cosθ+ℹ︎sinθ)と置くのではないのでしょうか? 問題文の下のchart & guideに 「|z|^... 続きを読む

XAK 22 1のn乗根 基礎例題11 nは自然数とする。方程式 z"=1 を解け。 CHART GUIDE) 方程式 a"=1 の解法 る, 1を極形式で表してド·モアブル活用 よって2=cos0+isin@ と表される。1=cos0+isin0 |2『=1であるから|2|-1 から、"=1 の両辺の偏角を比較する。 解◆答 2"=1 のとき |2|=1 から |2|>0 であるから ゆえに2=Cos0+isin0 とおくと |『=1 ーxが実数で |2|-1 より h0 .0 1=cos 0+isin0 x"=1 ならば 2=COS nU+isin nd まだ nが奇数のとき x=1 よって coS n0+isinn0=cos0+isin0 nが偶数のとき の両辺の偏角を比較すると x=±1 2kx (kは整数) なお,nを自然数とする とき,n乗すると1にな n0=0+2kr すなわち 0= となる。逆に,kを整数として る数を1のn乗根とい う。 2k元 +isin 2k元 2=COS の とおくと る=1 が成り立つから,は1のn乗根である。 また,Zn+ と 2の偏角は 2x だけ異なり、絶対値はともに1で あるから Zn+ル=Z。が成り立つ。 よって,Oののうち,互いに異なるものは zo, 2, Z2 2ョ-1のn個で、0s0<2xの範囲で考えたものに等しい。 したがって,求める解は -れに 9- 2sず。 2k元 2k元 +isin n (k=0, 1, 2, 2=COS n-1) れ Lecture 1のn乗根 上の解でk=1 としたものを z」=COS 2元 2元 とおくと、ドモアブルの定理から +isin n 1のn個の n乗根は 1,z, 2, そして,これらを表す点は,単位円の円周のn等分点になっている。 2」 ガー1 で与えられる。 レ

解決済み 回答数: 1
数学 高校生

(2x+y-13)+(3x-5y)‪√‬3=0を(1)のやり方で(2x+y-13)をa、(3x-5y)‪をbとしてb=0を(2x+y-13)+(3x-5y)‪√‬3=0に代入すると(2x+y-13)=0になりこれを(2x+y-13)+(3x-5y)‪√‬3=0の式に代入する... 続きを読む

基礎例題 58 (1) a, bは有理数とする。a+b/3 30 のとき, V3 が無理数であること を用いて,b=0 を証明せよ。 [類 三重大) (2)(2+3/3)x+(1-5/3)y=13 を満たす有理数x, yの値を求めよ。 CHART GUIDE) の明 証明の問題 直接も対偶利用もだめなら 背理法 (1) 直接証明するのは難しいから, 背理法を用いる。 6キ0 であると仮定して, 矛盾 を導くことで,b=0 を示す。 (2) (1)の 結果を利用 する。まず, 式を ●+■/3 =0 の形に変形する。 日解答日 (1) 6キ0 と仮定する。 ←6キ0 のとき b/3 =-a の両辺を6 A で割ることができる。 3=-5 a a+b/3 =0 から の a, bは有理数であるから, ① の右辺は有理数である。 ところが0の左辺は無理数であるから, これは矛盾である。 したがって 6=0 (2) 等式を変形すると (2.x+y-13)+(3x-5y)V3=0 … ② + ■/3 3D0 の形 x, yが有理数のとき, 2x+y-13, 3x-5y も有理数であり, 3 は無理数であるから,(1)により に。 3x-5y=0 · の断りは重要。 ③ を②に代入すると 2.x+y-13=0 4) 3 ③, ④ を解いて x=5, y=3 -2x+y-13+03 =0 Lecture a+hT の性質

解決済み 回答数: 1
数学 高校生

これでもし、標準式の条件:(bx1)^2-(ay1)^2=(ab)^2を用いなければどのようにして求めるやり方がありますか? 高校範囲超えてもいいので教えていただきたいです。

96 2次曲線の性質の証明 発展例題 56 双曲線上の任意の点Pから2つの漸近線に垂線 PQ, PRを下る- き,線分の長さの積 PQ·PR は一定であることを証明せよ。 GHART GUIDE) 2次曲線の性質の証明 標準形を利用し,計算をらくに x? v2 -=1 (a>0, b>0)を利用す この問題では,双曲線の標準形 a° 29 1 P(x,, y)とし, x,, y の満たす条件を式に表す。 2 PQ·PRをa, b, x, y で表す。 3 1の結果を代入し,PQ·PR がa, bだけの式で表されることを元 田解答田 ー直交 双曲線の方程式を y? =1(a>0, 6>0) x2 ーこの (xi, Yi) x a° ない。 \a とすると,漸近線は,2直線 bx+ay=0, また,P(x,, y)とすると,点Pは双 bx-ay=0 (*)では 公式を bx-ay=0 bx+ay=0 点(x, px+q= px x。 曲線上にあるから a° 6° よって 6°x,?-d°y?=d°6°………の ox,+ay. |bx,-ayi| 16x8-αy?|| また PQ·PR= 168+α° VB+a° 6°+a° 0を代入して PQ·PR= a'6° (一定) a°+6° Lecture 直交座標を利用した証明 2次曲線に関する図形的な性質の証明には,直交座標を利用して, 計算 標の決め方は, O 0を多く取る② 対称性が利用できる それには, 2次曲線の標準形が利用できるように座標をとると,計算量が少 という点がポ 上の例題で。 x* a° ニー1(a>0, b>0) の場合にっいて示す必要はない 56° 楕円の焦点を通り, 短軸に平行な弦を ABとする。短軸 長軸の長さと弦ABの長さの積に一致することを証正明せよ。

解決済み 回答数: 1
英語 高校生

受験で解いた問題なのですが、どれくらいできているか不安で、どれくらい合っているか(完璧じゃなくていいです)英語得意な方見てください🙏

設問AおよびBに答えなさい。 16d 9m bon の記号を書きなさい。 ow moit o informed injected b C. 1. People do not like to have their privacy (a. inclined d. invaded)by others. 2. The football player scored a goal without even taking a (a. disadvantage 1Glqx b.glance d d. pleasure) at the goalkeeper. bs hold 3. The moment Mary saw the tree, she realized that it was the one she had planted 。 d. numerous years ago. (a. date 6. decade c. dozen beaisy 4. Our society is built upon many layers of unfairness, and the strong always (a b. lose conflict uol od oh d. privilege ) on the weak. beauoaib C. prey 916 esky GuJSnc B.次の各文の意味がよく通るように、例にならって、 空所に与えられた文字で始まるもっとも適切 な1語を補い、英文を完成させなさい。解答欄には、与えられた文字も含めて完成した語を記入す Wold ob ること。 Hnide doumb 例 The new stadium is under (con ). 919T 答:construction ala doum on 1. In this country, the international airports are usually more crowded with passengers than the smaller(domestic ) airports. AG 201c gtGur obfioir 2. It is(alarming) to see that the Arctic ice has been melting at a considerable speed over the past ten years. alarning ls banu a nedt 3. Our university's canoe team (advance to the final in the international tournament in Brazil yesterday. 0998 A It is (essehtiel) to beat the egg whites long enough when you make a sponge Can Otherwise, it will not taste good.

解決済み 回答数: 1
物理 高校生

(2)において、ストッパーがはずれると外力がなくなるため運動量保存かな?と思って式を立てていったのですが、よくかんがえると最初ストッパーから外力を受けているから前後での運動量って保存しないと思ったのですが違うのですか?..でも解答では運動量保存使ってるから保存してるんですよ... 続きを読む

曲面 AB と突起Wからなる質量 A 小球 m Mの台が水平な床未上にあり,台の左 (リ 側は床に固定されたストッパー Sに 接している。Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量 m(m<M)の小 W ん 台 M S B 床 球を静かに放した。小球は曲面を滑り降りて突起W に弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな く,重力加速度をgとする。 (1) 突起 Wと衝突する直前の小球の速ざはいくらか。 小球が Wと衝突した直後の,小球と台の速さはそれぞれいくらか。 (3 小球が曲面を上り,最高点に達したときの台の連さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に, ストッパーSをはずして, 台が静止した状態で, 小球を A点 で静かに放す。 (4) Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 (5) Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1