学年

質問の種類

化学 高校生

(2)でC1とC2が並列接続とみなせるのはなぜですか?

462. コンデンサーの切り換え 解答 (1) 3.0×10-C, 4.5×10-J (2) 2.0×10C, 20V (3) 3.0×10-J 指針 C1, C2の上側, 下側の極板は,それぞれ導線で接続されており, スイッチSをBに切り換えた後、電荷の移動が完了すると,上側,下側 のそれぞれの極板の電位は等しくなる (図)。 すなわち, 各極板間の電圧 は等しく, このとき, C, C2 は並列に接続されているとみなせる。 解説 (1) QCVの公式から, C1 にたくわえられる電気量を Q1 と すると, Q1 = (10×10-) ×30=3.0×10-C U= = 1/2QVの公式から, C, にたくわえられる静電エネルギーを U」 と 10 U=1.1 x (3.0×10-) ×30=4.5×10-"J × すると, (2) スイッチSを切り換えたとき, C1, C2は並列接続とみなせる。C1 C=C+C2=10+5.0=15μFJ とC2の合成容量をCとすると, また,このとき, C にたくわえられていた電気量 Q1 が C と C2 に 分配されるので, C1, C2 の電気量の和は Q1 に等しい。 C1, C2の合成 コンデンサーに加わる電圧をVとすると, Q3.0×10-4 -=20 V C 15×10-6 求める C の電気量を Q1' とすると, Q1'=C,V=(10×10-) ×20=2.0×10-C V = == 05 ?整電ィネルギーをIT'Uっ とすると, S 等電位 B C₁ C2 等電位 Q² ⒸU = 1/2 CV²= 20 te 2C 電圧 用いてもよい。 別解 (2) 並列接続の 場合、電気量の比は, 電 気容量の比に等しい。 こ れを用いると, Q''=Qix- C1 C₁+C₂ 10 10+5.0 =(3.0×10-4x- = 2.0×10-4C 第V章 E 気

回答募集中 回答数: 0
理科 中学生

(3)の問題が分かりません。解説には「台車は,50cm から70cmの20cmの距離を、 1.87-1.58=0.29 s で下っている。60cmのところでの瞬間の速さは,50cm から70cmの距離を移動する平均の速さにほぼ等しいので,20cm゠ 0.29 s=689... 続きを読む

【斜面を下る運動】 しゃめん 2 図1のように、 なめらかな斜面を下る台車の 図1 運動を調べた。 台車の下る距離を少しずつ変 えて かかった時間を測定したところ、 右の 表や図2のようなグラフが得られた。 これに ついて、次の問いに答えなさい。 (1) 台車が下り始めてから1.5秒間に下る距 離は何cmか。 ( 45cm ] (2) 台車が出発点から30cm下る間の、台車 の平均の速さは何cm/sか。 小数第1位を 四捨五入して整数で答えよ。 ex Toy 出発点 距離 時間 [cm〕 〔s〕 0 10 0.71 20 1.00 30 1.22 40 1.41 50 1.58 60 1.73 70 1.87 一台車 0 図280 距60 距離〔C〕 イ 35cm/sウ 46cm/s エ69cm/s 40 20 [25cm/5] しゅんかん (3) 台車が出発点から60cm 下ったときの, 台車の瞬間の速さは,次のア~エのどれに 最も近いか。 1つ選び, 記号で答えよ。 ア 28cm/sイ 35cm/s (イ) 斜面 00 0.5 1.0 1.5 20 時間 [s] 入試レベル 【物体の運 右の図 1 また,図 を示した ミス注意 (1) 物体 すを示 5 (2)図 たらし 選び, (3), らアイウ ら1 9 (1) 1.5N (3) 変化した 解説 (2) 物体

未解決 回答数: 1
数学 高校生

241. このような解答でも問題ないですか? また積分で面積を求める系の問題では 模範解答ではほぼ必ず「図よりS=」 と結論へ進んでいるように思うのですが、 記述問題では図を書いた方がいいのでしょうか? またこの問題で図を書くとなると、曲線の極値などを求めて図を書くというこ... 続きを読む

2 基本例題 241 3次曲線と接線の間の面積 曲線y=x²-5x2+2x+6 とその曲線上の点(3, -6) における接線で囲まれた図 形の面積Sを求めよ。 とする。 基本 238,240 重要 247 指針 211 原点 面積を求める方針は ① グラフをかく 2 積分区間の決定 ③3 上下関係に注意 本問では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 また、積分の計算においては,次のことを利用するとよい。 3次曲線 y=f(x)(x2の係数がα) と直線y=g(x) が x=α で接するとき,等式 f(x)-g(x)=a(x-α)*(x-β) が成り立つ。エロー (2 気に 解答 y'=3x²-10x+2であるから,接線の 方程式は Dip y-(-6)=(3・32-10・3+2)(x-3) すなわち y=-x-3Sは この接線と曲線の共有点のx座標は, x3-5x2+2x+6=-x-3の解である。 これから x 3-5x2+3x+9=0 ( * ) ゆえに (x-3)^(x+1)=0 よって x=3, -1 したがって,図から、求める面積は S=S², 10 {(x-5x²+2x+6)-(-x-3)}dx ...... YA 6 -3 ico 6 3 18 x |曲線 y=f(x) 上の点 (α, f(α)) における接線の 方程式は y=f(a)=f'(a)(x-α) 1(x)0-(2017-2 辺が 【左辺が(x-3)を因数にも つことに注意して因数分解。 3 93 S 703230 1 -5 3 -6 -9 1 -2 -3 2013 380586 1904 1 =S_,(x-3)(x+1)dx =S²₂ (x−3)²{(x−3) +¹)dx=S_₁ {(x-3)² + 4(x-3)²) dx (x-a)²(x-B) - -[(x-3)" ], +4 [ {x=32], --64+ 256-04 (x-3)373 3 =(x-2)^{(x-2)-(B-α)} = S(x-a)" dx = (x=a)^² +C | ◄ n+1 36 7章 41 面 積

未解決 回答数: 0