学年

質問の種類

数学 高校生

この解説の前半がよくわからないのでもっと詳しくわかりやすい解説を求めてます! 特にf(x+1)-f(x)   =a(x+1)ⁿ+b(x+1)ⁿ⁻¹+・・・-(axⁿ+bxⁿ⁻¹+・・・)  から   =anxⁿ⁻¹+g(x) となるところがよくわからないです

重要 例題 21 等式を満たす多項式の決定 00000 多項式f(x)はすべての実数xについてf(x+1)-f(x)=2x を満たし,f(0) = 1 であるという。このとき, f(x) を求めよ。 〔一橋大〕 基本15 指針 例えば,f(x)が2次式とわかっていれば,f(x)=ax2+bx+c とおいて進めることが できるが,この問題ではf(x)が何次式か不明である。 →f(x)はn次式であるとして,f(x)=ax+bx-1+......(a≠0,n≧1) とおいて 進める。f(x+1)-f(x) の最高次の項はどうなるかを調べ, 右辺2.x と比較するこ とで次数nと係数αを求める。 なお,f(x) = (定数) の場合は別に考えておく。 5 基本 解答 f(x)=1|この場合は,(*)に含ま れないため、別に考えて f(x) = c(cは定数) とすると, f (0)=1から いる。 これはf(x+1)-f(x)=2x を満たさないから,不適。 よって, f(x)=ax+bx-1+(a0n≧1)(*) とす ると f(x+1)-f(x) =a(x+1)"+6(x+1)"'+.....-(ax+bx"-1+…………) =anxn-1+g(x) ただし, g(x)は多項式で,次数はn-1より小さい。 f(x+1)-f(x)=2xはxについての恒等式であるから,最 高次の項を比較して (x+1)" =x+nCixn-1+nCzx-2+... のうち, a(x+1)"-ax” の最高次 の項は anx-1 で,残り の項はn-2次以下とな る。 n-1=1 ... ①, an=2 ①から n=2 ゆえに、②から a=1 c=1 このとき, f(x)=x2+bx+c と表される。 f(0)=1から anx-1と2xの次数と 係数を比較。 またf(x+1)-f(x)=(x+1)2+6(x+1)+c-(x2+bx+c) c=1としてもよいが, =2x+6+1 結果は同じ よって 2x+b+1=2x この等式はxについての恒等式であるから b+1=0 係数比較法。 すなわち b=-1 したがって f(x)=x-x+1 POINT 次数が不明の多項式は,次と仮定して進めるのも有効

解決済み 回答数: 2
数学 高校生

数IIの(2)がわかりません。 [と〇の部分がわかりません。

96 重要 例題 57 剰余の定 (1) f(x)=x-ax +6 が (x-1)2で割り切 を温以上の整数とするとき、 x-1 を (x-1)で割ったときの余りを 求めよ。 CHART & SOLUTION 割り算の問題 基本公式 A=BQ+R を利用 1 次数に注目 ② 余りには剰余の定理 [学習院大] 基本 53 (1)(x-1)2で割り切れる⇒f(x)=(x-1)2Q)×(左党 ⇒f(x)がx-1で割り切れ、更にその商がx-1で割り切れる。 (2)次の恒等式を利用する。 ただし, nは自然数とし,°=1,6°=1である。 解答 a-b"= (a-b)(a1+α"-26+α"-362++ab"-2+6"-1) (1) f(x) は x-1で割り切れるからdf(1)=0 よって 1-a+b=0 -aa-1 L ,348 10 1 1 -α+1 ゆえに b=a-1.. ・① したがって f(x)=x-ax+α-1 =(x-1)(x2+x+1-α ) ST-A-AS-8-Sa-11-a+1 g(x)=x2+x+1-α とすると よって 3-a=0 ゆえに g(1)=0 a=3 条件から,g(x)も で割り切れる。 これを 1 に代入して b=2 (2) x-1 を2次式 (x-1)2で割ったときの商をQ(x), 余 りを ax + b とすると,次の等式が成り立つ。-xs- x"-1=(x-1)2Q(x)+ax+b 両辺に x=1 を代入すると 1 割り算の基本公式 A=BQ+R ゆえに x"-1=(x-1)2Q(x)+ax-a 0=a+b よって b=-a =(x-1){(x-1)Q(x)+α} x"-1=(x-1)(x"-1+x"-2++x+1)であるから xn-1+x"-2+……………+x+1=(x-1)Q(x)+α) (x-1)2Q(x)+α 1=x であるか b=-a=-n) (S-x)=8の項数はxから 両辺に x=1 を代入すると 1+1+....+1+1= a よって a=n ゆえに したがって、求める余りは nx-n PRACTICE 570 での

解決済み 回答数: 1
数学 高校生

数II複素数の問題です。 下の鉛筆でかいてあるとおりD>0では?

つよう 基本 48 重要 例題 50 2次式の因数分解(2) 4x2+7xy-2y-5x+8y+h がx,yの1次式の積に因数分解できるように, 定数kの値を定めよ。 また、 そのときの因数分解の結果を求めよ。 [類 創価大 ] CHART & THINKING 2次式の因数分解 = 0 とおいた2次方程式の解を利用 基本 20,46 「xyの1次式の積に因数分解できる」 とは, (与式)=(ax+by+c) (dx+ey+f) の形に表 されるということである。 また, 与式をxの2次式とみたとき(yを定数とみる), (与式) = 0 とおいた2次方程式 4x2+(7y-5)x-2y2-8y-k)=0の判別式をDとする と与式は x=(zy-s)+√x-(Py-5) の形に因数分解できる。この因 8 8 数x、yの1次式となるのは、Dが(yの1次式) すなわち」についての完全平方式のと きである。 それは, D1=0 とおいて、どのような条件が成り立つときだろうか? 答 ( (与式)=0とおいた方程式をxの2次方程式とみて 4x2+(7y-5)x-(2y2-8y-k)=0 ① の判別式をDとするとである。 83 int 恒等式の考えにより 解く方法もある。 (解答編 P-80=8+ および p.59 EXERCISES 15 参照) D=(7y-5)2+4・4(2y2-8y-k)=81y2-198y+25-16k 与式がxとyの1次式の積に分解されるための条件は,①の 解がyの1次式となること, すなわち D がyの完全平方式 となることである。 D1 = 0 とおいた」の2次方程式 81y2-198y+25-16k=0 の判別式をDとすると D2-(-99)2-81(25-16k)=81{112-(25-16k)} 44 04-81(96+16k) 2-1 0 D2 = 0 となればよいから 96+16k=0よって=-6 このとき, D=81y-198y+121=(9y-11)2 であるから, ①の解は x= __(7y-5)±√(9y-11)-(7y-5)±(9y-11) 8 8 5 ◆ D1 が完全平方式⇔ 2次方程式 D=0が重 解をもつ 計算を工夫すると 992=(9.11)=81・112 よって 音√(9y-11)=|9y-11| であるが, ±がついて いるから, 9y-11 の 対値ははずしてよい。 すなわち x=y-3-2y+2 4 中 (与式)=4x =(x-3)(x-2y+2)}(S) 括弧の前のを忘れ いように。 =(4x-y+3)(x+2y-2)

解決済み 回答数: 1