学年

質問の種類

数学 高校生

この問題って右下にあるように定数分離を使っても解けると思うのですが模範解答の解き方も覚えないといけないですか? 定数分離の方が自分的にやりやすいのでもし覚えなくて良かったらその方法だけでやりたいです。

4 第4章 三角関数 Think 10/17x **** 例題 152 三角関数を含む方程式の解の存在条件 OOT とする. 0 の方程式 cos20+asin0+a=0・・・・・・① を満たす 0 が存在するための定数αの値の範囲を求めよ. ( 岩手大・改 ) [考え方 sing とおくと、2倍角の公式を利用して、1の2次方程式として考えることがで きる。 (0) f(1) が同符号のとき f(t) のの係数が正より 区間 ②で③が実数解をもつための条 件は, f(0)>0 かつ f(1)>0 かつ f(t)=0 の判別式をDとすると. D≧0 かつ y=f(t)の軸が区間内 つまり、tの2次方程式の解の存在範囲の問題となるので 2次関数のグラフと軸の である. 共有点を考えるとよい. f(0)=a-1>0より, 解答 a 3 三角関数の加法定理 295 f(0) <0. f(1) < 0 の場合は区間内に解 をもたない。 17 0 a>1 ...... ④ f(1)=2a+1>0より 1 a> 2 8 t D=α-8a +820 より a≦4-2√/24+2/2≦a .......⑥ a-8a +8=0. 4=4+2/2 のとり得る値の範囲に注意しながら、 実数解 tの存在範囲を調べればよいが,そのと 上のようにいろいろな場合が考えられ、場合分けの必要がある場合分けをする ときの着眼ポイントは、「区間の端点の符号」,「軸と区間の位置関係」 「判別式(また は2次関数のグラフの頂点のy座標)」 である. t = sin0 とおくと,00πより 0≦t≦1 .....・・ ② cos20=1-2sin'0=1-2F より ①に代入して, -(1-2f2) + at + α = 0 つまり、 2f+ at+a-1=0 ...... ③ したがって、 ①を満たす 0 が存在するための条件は,区 間②において,tの2次方程式③が少なくとも1つの実数解 をもつこと, つまり ③より f(t)=21+atta-lとお とy=f(t)のグラフが区間②でも軸と少なくとも1つ の共有点をもつことである. (i) (0) (1) が異符号のとき つまり,f(0)f(1) <0 のとき f(0)=a-1 f(1)=2+a+a-1=2a +1 したがって, (a-1)(2a+1)<0 よって、12<a<1 -4<a<0 ......⑦ 軸はto より <<1 4 つまり. 以上(i)~(i)より,求めるa の値の範囲は したがって、④~⑦を同時に満たすαの値は存在しない。 ≦a≦1 Focus 最終的に2次関数の 解の存在範囲における場合分け 48 する。 問題として捉えるこ とができるかがポイ ント 区間の端点の符号で 場合分けを考える. (注)を参照) f(0)>0,f(1)<0 または, f(0) <0. f(1)>0 より 1 t f(0) f(1)<0 f(0)=0 のとき, す でに f=0 が③の解 となるのでf(1) の符 よって a= =1/12 または a=1 号は関係ない. () f(0)=0 または f(1) = 0 のとき つまり,f(0)f(1)=0 のとき (a-1)(2a+1)=0 f(t) =2f+ at+a-l =21++ 第4章 「区間の端点の符号」 「軸と区間の位置関係」 「判別式(または2次 関数のグラフの頂点のy座標)」に着目せよ! 注〉 例題152で 「区間の端点の符号」で場合分けを行ったのは, (i) や (i) の場合は端点の符 号を調べれば,軸や判別式を調べなくても、題意を満たす αの値の範囲を調べること ができるからである. このことは, Focus Gold 数学Ⅰ+Aの第2章 「2次関数」 で学んだ 「解の存在範囲」 の問題と関連している. 注) 「定数分離」という着眼から, 例題152を次のように解くこともできる. 2t2+ at+a-1=0 より 2t-1=-at-a g(t)=2t-1.h(t)=-at-a とすると, ③を満たす が区間②内に存在するのは, y=g(t) と y=h(t) が区 間②において共有点をもつ場合である.このとき, h(t)=-a(t+1) より,y=h(t)は定点(-1, 0) を通 る直線であるから, 右の図より、共有点をもつのは, -15-as y=g(t) 1 =h(t) (0, -1) を通る直線から, より、 1/2sas1のときである。 (1,1) を通る直線まで変化する. 練習 152 とする0の方程式 sin' +acos0-2a-1=0………① を満たす 0 (同志社大 改)

解決済み 回答数: 2
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0