学年

質問の種類

数学 大学生・専門学校生・社会人

写真はロピタルの定理をε-δ論法を用いて証明したものについてですがらわからないことが3つあります。 ①なぜδをさらに小さくすると、青線のような不等式が成り立つのですか? ②どの部分の不等式を変形したら赤線の不等式が出てくるのですか? ③赤線の不等式が成り立つときなぜ定理が証... 続きを読む

定理4.6 f(x),g(x) が (a,b) 上の微分可能な関数で lim f(x) = lim_g(x) =+∞ エロ+ f'(エ) をみたしているとする。 このとき 極限 lim = = A が存在するならば x+a+ g'(x) f(x) lim == A za+ g(x) が成り立つ。なおこの定理は lim の部分をすべて lim あるいは lim, +α14 lim におきかえても成立する. b- 8 ◆証明 任意の0<<1に対して,あるδ0が存在し,a<x<a+δに対して f'(x) A-< <A+EAKE g'(x) が成り立つ。必要なら80をさらに小さくとって,f(x)>0,g(z) >O(a<x< a+δ) となるようにできる。 コーシーの平均値定理から, a<x<a +δに対して,あ ∈ (+8)が存在し, f(x)-f(a+8) f'(g) = g(x) − g(a+8) g'(§) が成り立つ。ゆえに A-ε< f(x)-f(a+8) である. したがって f(x) = + g(x) g(x) である. ここで 9(x) − g(a+6) = 1 g(x) g(a+6) (エ) f(a+8) →1 (x → a+), g(x) − g(a + 8) f(x)-f(a+δ)g(x)-g(a+8) f(a+8) 9(x) g(x) − g(a+8) <A+e 価 以 grat (エ) 0(土)であるから,必要ならばさらにを小さくとることにより1> g(z)-g(a+6) f(a +8) g(x) >1-ɛ, 0< <e としてよい。ゆえに g(x) f(x) (A+c) +g> >(A-) (1-e)=A-e(A+1-c) g(x) が成り立つ。よって定理が証明された, 残りの主張も同様の議論で証明できる.

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 高校生

青線部の所の意味が分かりません!

(?) (2)) 基本 例 20 極限の条件から数列の係数決定など 00000 ) 数列 {an) (n=1, 2, 3, .....) が lim (3n-1)α=-6を満たすとき. limna である。 918 [類千葉工大] lim(n+an+2-√n-n)=5であるとき、定数αの値を求めよ。 p.34 基本事項 2.基本 18 針 (1) 条件 lim (3n-1)a=-6を活かすために, na-3n-1) α × n 変形 3n-1 77 数列 3n-1 は収束するから、次の極限値の性質が利用できる。 liman=α, limbn=β⇒lima,b=aβ (a,βは定数) 700 818 (2) まず 左辺の極限をαで表す。 その際の方針は p.38 基本例題18 (3) と同様。 41 (1) nan=(3n-1) anx n であり Ana を収束することが 3n-1 lim(3n-1)an=-6, n 1 1 lim =lim わかっている数列ので 表す。 72-00 3n-1 12-00 1 3 3 ? n 数 2 2章 数列の limnan=lim(3n-1)anxlim よって 72100 12-00 1 =(-6). =-2 2) lim(√n2+an+2-√n²-n) n100 (n+an+2)-(n²-n) =lim n11 √n²+an+2+√n²-n =lim 718 (a+1)n+2 √n² +an+ 2 + √√n ² -—n a n (a+1)+ 2 2 n 1+ + + 1- n² n n-co 3n-1 =lim a+1 N18 1 2 n a+1 よって、条件から =5 2 したがって a=9 mil-mila 極限値の性質を利用。 分母分子に √√n²+an+2+√√n²-n を掛け、分子を有理化。 分母分子をnで割る。 n0 であるから n=√n² αの方程式を解く。 次の関係を満たす数列 {az} について, liman と limnan を求めよ。 ア) lim (2n-1)an=1 12-00 81U (イ) lim n→∞ 2an+1 an-3 =2 n→∞ lim(√m²+an+2-√n²+2n+3)=3が成り立つとき, 定数 α の値を求めよ。

回答募集中 回答数: 0