学年

質問の種類

数学 高校生

写真の問題の赤線部についてですが、 z,p,qをそれぞれ、OZ→,OP→,OQ→と定めると、(以下、矢印記号は省略します)z=p+qtはOZ=OP+tOQとなることから、赤線部のようなことは言えないのではないのでしょうか?もし、1番下のポイントに書いてあるように関係式が、O... 続きを読む

28 直線 (ⅡI) 複素数平面上に2点 α=1+2i, β=2+i が与えられている.この2 点を通る直線上の点zは,実数t を用いて, z=(1+t)+(2-t)i と表せ ることを示せ. △△ xy平面で考えるとαとは (1,2)のことで, βとは (2,1) のことだから, 求める直線は, 2点 (1,2),(2, 1) を通る直線になります. このイメージで解答をつくっていけばよいのです. 精講 **** 20 47 解答 ポイント α限が一直線上にあることを 表している。 3 1 O a 複素数平面上の2点α, βを通る直線は z=a+(β-a)t (t: 実数)と表せる PS 22 z-a=t(β-α)より、 子供え z=α+ (B-α)t =(1+2i)+(1-i)t =(1+t)+(2-t)i 今回で 注 この結果を逆に考えれば, z=x+yi において, x,yがパラメーメニド 夕tの1次式で表されているとは直線上を動いていて, z をt につ いて整理すれば z = p+gt (p,q: 複素数)と表せ, zの軌跡は点が を通り,傾き q方向に動いてできる直線になります. ( 演習問題28) 47210 1 2 3 IC のイメージ 直az=ta の豆は直線上 にある。 ImHg

回答募集中 回答数: 0
数学 高校生

互いに素の時どちらかにマイナスをつけなければならないのはわかっているのですが、今回は答えと違う式の方にマイナスをつけました。答えと違う方にマイナスをつけると範囲が変わってしまうのですがどうしたらいいですか。

47 花子さんの住んでいる町内で毎年行われているクリスマス会では、参加者全員にスナック菓子を1 袋ずつ配ることになっている。 今年は、花子さんがスナック菓子を買うことになり、1年前のクリス マス会を知っている人に話を聞いた。 1年前は、 参加者は30人で, スナック菓子は, 3袋入りの箱と7袋入りの箱の2種類が売られていた。 3袋入りを箱 7袋入りを箱買うと30人全員に1袋ずつ残さず配ることができたという。ただし, a b はともに0以上の整数とする。 このことから 3a+76=アイ ...... ① が成り立ち、①を満たす a, bの組(a,b) は, (a,b)= ウエ 組だけ存在する。 (1) 花子さんは,参加者が何人であれば、3袋入りと7袋入りの箱をうまく組み合わせて買うことで スナック菓子を参加者全員に1袋ずつ残さず配ることができるかに興味をもった。 参加者全員に1 袋ずつ残さず配ることができない場合について考えよう。 3袋入り x 7袋入りを箱買うとする。 ただし,x,yはともに0以上の整数とする。 (i)yが3の倍数のとき、y=3 (は0以上の整数)と表すと 3x+7y= (x+51) であり, 3x+7yと表される数は 以上の3の倍数すべてである。 (ii)yを3で割った余りが1のとき, 31+1 (1は0以上の整数)と表すと 3x+7y=サ (x+シ 1 __ス) +セ (ただし、 >セ であり, 3x+7y と表される数は3で割った余りがソである整数であり,そのうち最小のも のはタである。 ()yを3で割った余りが2のとき, (i), (ii)と同様に考えると, 3x+7y と表される数は3で割っ た余りがチである整数であり、そのうち最小のものはツテである。 (i)~(ii)より, 3x+7y (x, y はともに0以上の整数)と表されない自然数は全部で ト 個ある。 すなわち, 3袋入りと7袋入りの箱をどのような組み合わせで買ったとしても、参加者全員に1 袋ずつ残さず配ることができない参加人数は全部でト通りある。 (2) 今年は別のスナック菓子を買うことにした。 そのスナック菓子は2袋入りの箱5袋入りの箱の 2種類が売られており、中身のパッケージのデザインも異なっていたため、クリスマス会を盛り上 げるため, 2袋入り 5袋入りのどちらも1箱以上買うことになった。 このとき2袋入りと5袋入りの箱をどのような組み合わせで買ったとしても, スナック菓子を 参加者全員に1袋ずつ残さず配ることができない最大の参加人数はナニ人である。 (配点20) 公式解法集 48 OSTO 難易度★★★ SELECT SELECT 90 60 目標解答時間 15分 オ ). ( カ の2

回答募集中 回答数: 0
数学 高校生

(2)のよって~の計画方法を分かりやすく教えてください。

119 合同式の利用 (2) 0 合同式を用いて,次の問いに答えよ。 例題 (1) 13 MH を9で割った余りを求めよ。 nが自然数のとき, 26F-5+3'" は11で割り切れることを示せ。 (2) CHART SOLUTION αをm²で割った余り まずは a²,a, で合同式を考える (1) 134 (mod 9) であるから, 48 を9で割った余りを考えればよい。 そして、 4=1 (mod 9) または A-1 (mod 9) となるkを見つけることが できれば,累乗はすぐに計算できる。 (2) 232-1 (mod !!) ではあるが,指数に文字が入っているため、うま く利用できない。 (1) 134 (mod 9) であり 指数がnの1次式になっている項の和+4+6++.....については,まず d", b,..... の合同式を考えるとよい。 4167 (mod 9) よって 14² 47.1 28 1 (mod 9) 13100 4100 (4³) 33.4 13.44 (mod 9) よって ゆえに 求める余りは 4 (2) 2649 (mod 11) 39 (mod 11) であり 26-5-20-11+1 (29) 2 00000 ((2) 類 学習院大) 32"=(3²)" 20-6+32" (2) "1.2+ (32)" 9"-¹.2+9" =9"-¹(2+9) =9"~1.110 (mod 11) 418, 419 PRACTICE 1199 421 ← 132, 13, ·····を考えて もよいが. の方が計算しやすい。 99⁰-1.9 -1≧0であるから 97-1は整数。 ゆえに,297-5 +327は11の倍数である。 参考 (2) は、数学Bで学習する 「数学的帰納法」という証明法を用いて証明することも できる。

回答募集中 回答数: 0
数学 高校生

判別式を用いる2変数関数の最大最小の問題はメジャーですか?tで置き換えて判別式で求める方法があまりしっくりきません。

重要 例題 1192変数関数の最大・最小 (4) 00000 実数x,yがx2+y2=2 を満たすとき, 2x+yのとりうる値の最大値と最小値を 求めよ。 また,そのときのx,yの値を求めよ。 [類 南山大] 基本98 指針 条件式は文字を減らす方針でいきたいが,条件式x2+y²=2から文字を減らしても, 2x+yはx,yについての1次式であるからうまくいかない。 そこで, 2.x+y=tとおき, これを条件式とみて文字を減らす。 計算しやすいように y=t-2x としてyを消去し, x+y2=2に代入すると x2+(t-2x)=2となり,xの2次方程式になる。 この方程式が実数解をもつ条件を利用すると,tのとりうる値の範囲が求められる。 実数解をもつ⇔D≧0の利用。 CHART 最大・最小=tとおいて, 実数解をもつ条件利用 解答 2x+y=tとおくと y=t-2x... ① これを x2+y2=2に代入すると 整理すると 5x²-4tx+t2-2=0...... ② このxについての2次方程式 ② が実数解をもつための条件は, ②の判別式をDとすると D≧0 ここで 2=(-2t)²-5(-2)=-(-10) 4 x2+(t-2x)=2 D≧0から t²-10≦0 これを解いて -√10 ≤t≤√10 t=±√10 のとき D = 0 で, ② は重解x=- t=±√10 のとき x=± したがって x= 2√10 5 x=1 2√10 5 2√10 5 '10 y= 5 y=- -4t 2.5 2t 2/4 をもつ。 5 √10 ① から y=± 5 (複号同順) √10 5 のとき最大値 10 のとき最小値-√10 参考 実数 a, b, x, y につ いて,次の不等式が成り立つ (コーシー・シュワルツの不 等式)。 (ax+by)³s(a+b) (x² + y²) [等号成立はay=bx] a=2, b=1 を代入すると (2x+y)=(2+12)(x2+y²) x2+y²=2 であるから (2x+y)^2≦10 よって -√10 ≤2x+y≤√/10 (等号成立はx=2yのとき) このようにして、左と同じ答 えを導くことができる。 187 3章 13 2次不等式

未解決 回答数: 1