学年

質問の種類

数学 高校生

左下半分から右上半分で言っていることって、指数部分は整数しかこないということであってますか?

これで, In-yn=(zo-yo) (2a-1)=(2a-1)" xn+yn=(xo+yo)1" d =1 ©+@ だから, で、 2 スタートならn-1乗ですが co-yo スタートなのでn乗です。 Xn= =1/2(21-1)+1/2 あとは,数列{.xx} が収束するための必要十分条件です。 計画 京大では,極限の問題であっても、「求めよ」ではなく,本間 のように「収束する (必要十分) 条件を求めよ」としてくる場 合がよくあります。 京大らしいですね。 本問ではn→∞で,In の式でnがからんでいるのは (2α-1)” の部分 だから,これは「無限等比数列の極限」になります。これとカン違いしや すいのが「指数関数の極限」で,収束条件がごちゃごちゃになりやすいの が「無限等比級数」です。ここで確認しておきましょう。 まず、「無限等比数列」、 「指数関数の極限」は, 無限等比数列 8 (r>1のとき) limr"=1(r=1のとき) 00-11 0 (-1<r<1のとき) r≦-1のとき{r} は振動 しかし、指数関数のは実数であり,α ≦ 0 はダメです。 たとえば, a=-2, として、dioを勝手に<0の場合に拡張して使うと、 (-2)=√-2=√2i となり虚数になってしまいます。 高校数学では, 実数値を入れたときに実 数値を出す 「実数関数」 しか扱いません (大学に入ると, 複素数に拡張さ れた 「複素関数」を扱います)。 したがって, a< 0 はマズイんです。a=0 は何乗しても0,α=1は何乗しても1だから, α = 0 1 もはずして, んですね。 指数関数では,a > 0, a ≠1で考える ただし、問題で与えられた数式の形によっては, α = 0 やα=1の場合 について, 1=1やO* = 0 (0° は高校では未定義なので除外して考えます) を使って計算することもあります。 次に、「無限等比数列」 と 「無限等比級数」は, ◆無限等比数列の収束条件 数列{r-"}が収束するため の必要十分条件は, -1<r≤1 無限等比級数の収束条件 無限等比級数 a + ar + art...... 無限等比数列の方は,∞と振 動の場合がダメなので, +arn-1+………… が収束するための必要十分条件は, -1<r<1 または α = 0 で,その和は, limr"=1となる1 a -1<r<1のとき, wwwwwww 1-r limr" = 0 となる-1<r<1 wwwwww 指数関数の極限 8 (a>1のとき) limax 0 (0 <α <1 のとき) どちらも●の形なのですが、指数関数ではα=1やa≧0は考えませ ん。 大丈夫ですか? 無限等比数列のnは自然数だから,r≧0であっても OK です。たとえ ば,r=-2なら, (-2)'=-2, (-2)^=4(-2)=-8, のように値が定まります。 11-00 を合わせて, 収束する条件は, -1<r≦1←r=1のときも収束します。 a=0のとき,0 一方,無限等比級数の方は、部分和をS とすると, ●a=0のとき S=0 ∴ lim S=0 (収束) ●a≠0,r=1のとき n→00 Sn=na ... 数列{Sn} は発散 ●a0r1のとき Sn a(1-rn) r=1のときはこの 1-r 公式が使えません。 248 第7章 極限・微分 テーマ32 極限 ① 249

解決済み 回答数: 1
数学 高校生

k=4±√14から、k=4-√14にしぼる方法を教えてください、🙇‍♀️

x-1 0000 とする。 よびそのときの 方 OP2 を表す この円が領域 重要 例題 126領域と分数式の最大・最小 xりが2つの不等式x-2y+1≦0, x2-6x+2y+3≦0 を満たすとき, |最大値と最小値,およびそのときのx, yの値を求めよ。 指針 y-2 x+1 基本122 y-2 連立不等式の表す領域Aを図示し, -=kとおいたグラフが領域Aと共有点をも x+1 つようなkの値の範囲を調べる。 この分母を払ったy-2=k(x+1)は,点(-1,2) を通り、傾きがんの直線を表すから,傾きんのとりうる値の範囲を考えればよい。 201 CHART 分数式 y-b 3y=-12, y=9 x=3,y=6 v=9, x+5y=1 x=2,y=1 y=7, 線の交点について の最大最小 y-b x-a =kとおき, 直線として扱う の式で表せる x-2y+1=0 ①, x2-6x+2y+3=0 とする。 連立方程式 ① ② を解くと 解答 ...... ② yA (x,y)=(1,1) (4,22) P ① 5 ② By=-12 x=-3, y=1 =kとおくと ゆえに、連立不等式 x-2y+1≦0, x2-6x+2y+3≦0 の表 す領域Aは図の斜線部分である。 ただし, 境界線を含む。 y-2 1 3 2 32 最大 x+1 y-2=k(x+1) 3 3章 1 不等式の表す領域 11,21通って傾きk 半径)=kが最大 すなわち y=kx+k+2 ...... ③③ ③は、点P(-1,2)を通り, 傾きがんの直線を表す。 図から, 直線 ③が放物線 ② に第1象限で接するとき k の値は最大となる。 y)²+ y²=k を使わない方法 通り 直線② ② ③からy を消去して整理すると x2+2(k-3)x+2k+7=0 直線の方程式は -0)-(y-0) 4 D 11=(k-3)-1 (2k+7)=k-8k+2 k(x+1)-(y-2) = 0 は, x=-1, y=2のときん についての恒等式になる。 →kの値に関わらず定 点(-1, 2)を通る。 このxの2次方程式の判別式をDとすると-21k-3)-2(4-5-3) 2.1 2 y=5x -2+2x ②連立し 26yam 接点の座標であ 直線 ③ が放物線 ②に接するための条件はD=0であるか ら, k-8k+2=0 より k=4±√14 第1象限で接するときのkの値は 2 √14-1 k=4-√14 小値が求められ ①に代入して このとき、接点の座標は (y14-1.4.14-12) 次に,図から、 直線 ③ が点 (1,1) を通るとき, kの値は最 小となる。このとき17--1/ k=4+√14 のときは, 第3象限で接する接線と なる。 重解求める ミニだけでOK ◄k= y-2 x+1 よって x=√14-1,y=4√14-12 のとき最大値 4-14; x=1, y=1のとき最小値- 12/2 2+2(K-31x+2K+7:0 axbxe+50 の解 練習 x=1 2A 126 x,yが2つの不等式 x+y-2≦0, x2+4x-y+2≦0 を満たすとき, y-5 の最大値 x-2 と最小値, およびそのときのx,yの値を求めよ。 点(x,y)が (東京理 D-210 EX

解決済み 回答数: 1
数学 高校生

基本例題111がわかりません😭😭 解説を見てもわからなかったので説明お願いします!

■90 基本 例題 111 2次不等式の解法 (2) 次の2次不等式を解け。 (1) x2+2x+1>0 (3) 4x4x2+1 (2) x²-4x+5>0 (4) -3x2+8x-6>0 指針 前ページの例題と同様, 2次関数のグラフをか いて、 不等式の解を求める。 グラフとx軸との共 有点の有無は,不等号を等号におき換えた2次方 程式 ax2+bx+c=0の判別式Dの符号, または 平方完成した式から判断できる。 2 00 p.187 基本事項3~日 D=0のとき [a>0] D<0のとき 重 次の (1) 指 (1)x2+2x+1=(x+1)2 であるから, (1) 解答 不等式は (x+1)2>0 よって, 解は 1以外のすべての実数 a x D = 0 の場合, を基本形に。 左辺の式 + + -1 <x<-1, -1<xと答え てもよい。 解 (2) x2-4x+5=(x-2)+1であるから (2) DK の場合,左辺の式 不等式は (x-2)²+1>0.tics よって,解はすべての実数 (3) 不等式から 4x²-4x+1≦0 4x2-4x+1=(2x-1)2 であるから, 不等式は (2x-1)20 よって、解はx=/12/2 (4) 不等式の両辺に -1 を掛けて 3x²-8x+6<0 + x を基本形に。 関数 y=x2-4x+5の値 はすべての実数xに対 図してy>0 (1+4)1 関数 y=4x²-4x+1の (11)値は 2 (4) 2次方程式 3x28x+6=0の判別式を Dとすると 2(-4)2-3・6=-2 x= のときy=0 x=1/2のときりり x x2の係数は正で,かつD<0 であるから, すべての実数D0 から, xに対して3x2-8x+6>0が成り立つ。 よって、与えられた不等式の解はない の 別解 不等式の両辺に-1を掛けて 3x²-8x+6<0 3x²-8x+6=3(x-1/3)+/3> + => 0 であるから, 3x²-8x+6<0 を満たす実数xは存在しない。 よって,与えられた不等式の解はない y=3x²-8x+6.0 グラフとx軸は共有 点をもたない。 これと ①のグラフが下に凸で あることから すべての 実数xに対して 3x28x+6>0

解決済み 回答数: 1
物理 高校生

物理 132番の(ケ)について質問です (ケ)のときコイルの誘導起電力はi1の向きと同じなので符号は正と考えたのですが回答では負でした。なぜ負になるのかを教えてください🙏

抵抗 R O スイッチS に比べて増加するか、するがす (i) コイル2の長さを軸方向に押し縮めた後に、 同じ実験をした。 (i) 鉄心を引き抜いた後に、同じ実験をした。 132. 〈コイルを含む直流回路> 〔19 大阪府大 改 からの距離 (m) うう。 導体棒中 ■における電場 反時計回りに, 電力が生じる。 印b の向 ■に電流が流れ 図1の矢印 はたらくと考え である。 [15 同志社大 〕 次の文章のアコに当てはまる数式または数値を 答えよ。 また、サに当てはまる語句を答えよ。 h c L b Ix d f R 図に示すように抵抗とコイルをつないだ回路で, スイッ チSを閉じたり開いたりしたときに回路に流れる電流を考 えよう。 電池の起電力をE. コイルの自己インダクタンス L. 2つの抵抗の抵抗値は図のようにr, Rとする。 電池 と直列につながれた抵抗値の抵抗は電池の内部抵抗と考 えてもよい。 また, 導線およびコイルの電気抵抗は無視できるものとする。 a +r ch S E スイッチSを閉じた後のある時刻にコイル, 抵抗値Rの抵抗を図の矢印の向きに流れる電 流をそれぞれ I, と書くことにする。 このとき, 抵抗値の抵抗を流れる電流はア となる。 経路 abdfgha についてキルヒホッフの法則を適用すれば、 電池の起電力と回路に 流れる電流の間にはE=イの関係が成りたつ。 一方,このときコイルを流れる電流が 微小時間 4t の間に 4 だけ変化したとすると, 経路 abcegha についてキルヒホッフの法則 を適用すればE= ウ の関係が得られる。 スイッチSが開いていて回路に電流が流れていない状態でスイッチSを閉じたとき、その 直後に回路に流れる電流は, L=エ=オとなる。したがって、スイッチSを閉 じた直後にコイルに生じる誘導起電力の大きさはE, r, R を用いてカと表される。 方, スイッチを閉じてから十分に時間が経過した後にコイルに流れる電流は、ムキ であり,このときコイルにはクだけのエネルギーが蓄えられることになる。 to D

解決済み 回答数: 1
物理 高校生

qEによって上に+が移動するから右にqvyBの力が働くならどうして最後下に働いた力によって左に力が働かないんですか?

電場や磁場の影音 電気量g(g0) の荷電粒子が時刻 t = 0 に原点0から初速度 = (u, 0)(o> 0) 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, で運動を開始した。 時刻 t でのこの粒子の位置は である。 = い (あ、 (x,y) ) 図2のように,x 平面に垂直に、紙面の裏から表に向かって,磁束密度B の一様な磁 場がかかっているとする。質量m, 電気量 q(q > 0)の荷電粒子が時刻 t = 0 に原点 0から初速度v=(-v0) (0)で運動を開始した。 この粒子が運動開始後に最 初に軸を通過するときの時刻はt= で、そのときの座標は う (x,y)=(0, 小巻 である。 平 初めてとなる時に初に置かれ 図3のように, y 軸方向正の向きに強さ E の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって,磁束密度B の一様な磁場の両方がかかっているとする。 質量m,電 気量 g(g> 0)の荷電粒子が時刻 t = 0 に原点0から初速度。 = (0,0)で運動を 開始した。この粒子のX軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ ax, ay とすると,運動方程式は TE ひ v x 図1 図2 → x この衝突が起きるには、エネ <号を満たす特別な値となる y B 図3 x

解決済み 回答数: 1