学年

質問の種類

物理 高校生

⑶についてです。黒く書いたように6m延長させるのはなぜ間違ってるのですか?なぜ上下逆転するのですか?

170 W章 波動 基本例題44 横波の伝わり方 図は,x軸上に張られたひもの1点Oがy[m〕 単振動を始めて, 0.40s 後の波形である。 0.20 (1) 振幅, 波長, 振動数, 波の速さはそれ ぞれいくらか。 (2) 図の0,a,b,cの媒質の速度の向 きはどちらか。 速さが0の場合は 「速さ」と答えよ。 両 (3) 図の時刻から. 0.20s後の波形を図中に示せ。 指針 (1) 周期は、波が1波長の距離を 進む時間から 0.40s である。 振幅, 波長をグラ フから読み取り, 振動数, 波の速さを求める。 6 (2) 横波では, 媒質の振動方向は波の進む向き に垂直であり、媒質はy方向に振動している。 (3) 波は1周期の間に1波長の距離を進む。 解説 (1) グラフから読み取る。 振幅 : A = 0.20m, 波長 : 入=4.0m 振動数, 波の速さは, 振動数:= 1/72= 波の速さ : v=fd = 2.5×4.0=10m/s (2) aとcは振動の端なので速さが0である。 Oとbの向きは,微小時間後の波形を描いて調 べる。 0: 上,b:下,aとc: 速さ 0 ST 1 0.40 =2.5 Hz I 08.0 0 JA 20 -0.20 a y[m〕↑ 0.20 0 y[m] 0.20 C HA wazlo -0.20 基本問題 334, 335,336 Say 6 7 FAX 3 微小時間後 I 52 8 HOTO 4 5 6 7 8 x[m] 133-0.20 a (3) 周期が 0.40sなので, 0.20s 間で波は図の状 R 態から半波長分を進む。 x (m) I に ** XX I I 6 7 8 x〔m〕 0 [Point 媒質の速度の向きを調べるには, 微 小時間後の波形を描くとよい。 SHU

回答募集中 回答数: 0
物理 高校生

(5)の単振動、最大の速さについての質問です!解説は理解出来てますが、2枚目にあるように単振動の位置エネルギーで表せないのはなぜですか?

114 力学 38 単振動 水平面内において一定の角速度ので 回転している円板がある。 円板上には, 半径方向にみぞが掘られており、その中 にばね定数k,自然長のばねが置かれ ている。 ばねの一端は中心0に固定され, 他端には質量Mの小球Pがつけられてい る。 Pはみぞの中を滑らかに動け, 0 か つ らPまでの距離rを用いておもりの位置を表す。 いま、円板上で静止 している観測者Aには, Por=ro の点に静止して見えた。 真上から見た図 Level (1), (2)★ (3)~(5)★ Point & Hint W (1) ro をlk, M, ω を用いて表せ。 (2) こうなるために必要な角速度に対する条件を表せ。 次に,Pをみぞに沿って外側に動かし, 点0 からの距離 n の点で静 かにPを放したところ, P はみぞの中で運動を始めた。 (3) Pが位置にあるときAが見る加速度をaとすると, A が書くべ き運動方程式はどのようになるか。 みぞ方向外向きを正とする。 (4) Pの位置を,rの代わりに ro から測ってx=r-ro を用いて表 すと, 運動方程式の右辺の力はLx の形になる。 Lをk, M, ω を 用いて表せ。 (5) Pを放してからばねの長さが最小となるまでの時間, ばねの長さ の最小値,およびAが見るPの最大の速さをk, M, w, ro, n, のう ち必要なものを用いて表せ。 (北海道大) Aにとっては遠心力が現れている。 (2) (1) の答えの形から自然に条件が決まってくる。 (5) (4) の結果からPの運動が確定する。 P the p LECTURE (1) 遠心力と弾性力のつり合いより Mrow²=k(ro-l ... (2)>0より kl Yo= k-Mw² k-Mw² > 0 k w√ M 回転が速過ぎると(ωが大き過ぎると),弾 性力より遠心力がまさり つり合う位置がな くなってしまう。 (3) ばねの伸びは -l と表せるから Ma=Mrw²-k(r-1) (4) 上式に r = ro+x を代入すると ( 38 単振動 •mmmm 自然長 遠心力がかかるから, | ばねは伸びているはず。 ①を用いた 115 遠心力 Mをmと書いてい ないだろうか? 物体上から見たとき 向心 外から見たとき ▷じゃ Ma = M(ro+x)w² − k(ro+x-1) ) =Mxw²2-kx =-(k-Mω²)x ......2 ∴. L=k-Mo² (2)で求めた条件よりLは正の定数であり,②はPがx=0(力のつり合 い位置)を中心として単振動をすることを示している。 (5) ②から単振動の周期Tは M 最大の速さは、 公式 Vmax = Aw より [ro を代入する) より速い Queeeeeeeeeeee- 0 Yo T=2nvk-M²2 2π√ とする誤りが多い。ばね振り子の周期 k が不変となるのは、ばねの力のほかに一定の力 がかかる場合のことである。 遠心力は半径と ともに変わる力である。 ばねの長さが最小となるのは, 内側の端の位置にくるときだから、端か ら端までの時間は半周期。よって, M T= √k-M₁² 振幅Aは上図より, A = n-ro よって, ばねの長さの最小値は ro-A=2ro-n # A 中心 k-Mos² A² = (n-1)√² M

回答募集中 回答数: 0
物理 高校生

物理の問題です。写真の(エ)の問題で私はmgx_2=1k(x_2-L)^2/2と考えましたが、解答は写真の通りでした。私の方法では答えを出すのが困難なため3枚目の写真の通りにやるべきなのでしょうか?

183. ゴムひもによる小球の運動 次の文中の□を埋めよ。 図のように,屋根の端に質量の無視できるゴムひもで小球をつな いだ。小球を屋根の位置まで持ち上げてから,落下させたときの運 動を考える。 ゴムひもの自然の長さはL, 小球の質量はmである。 図のように鉛直方向下向きにx軸をとり, 屋根の位置を原点とする。 使用するゴムひもは, 小球の位置xが x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方,x>Lのとき, ゴムひもは伸 びて張力がはたらき, ばね定数kのばねとみなせる。小球は鉛直方向にのみ運動し,地 面への衝突はないものとする。 重力加速度の大きさをgとする。 小球を屋根の位置(x=0) から静かにはなして落下させた。x=L の位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると, x=イである。 x = x1 での小球の速さは,v=ウであ る。さらに小球は下降し,最下点に到達した後, 上昇した。 最下点の位置を x2 とすると, X2=エである。 また, 最初に x1 を小球が通過してから最下点を経て、再び xx にも どってくるまでに要した時間はオである。 [18 明治大] 175,176 JostiotutEn II Ahi/ t エ 1-412. I/1. 屋根 -0 x

回答募集中 回答数: 0
物理 高校生

物理について質問します。2枚目の写真のmg(x_1-L)の部分がモヤモヤします。x=x_1を基準に取っているためだと思いますが誰かこのモヤモヤを解消してください!

x 183. ゴムひもによる小球の運動 次の文中の を埋めよ。 図のように,屋根の端に質量の無視できるゴムひもで小球をつな いだ。小球を屋根の位置まで持ち上げてから,落下させたときの運 動を考える。ゴムひもの自然の長さはL,小球の質量は m である。 図のように鉛直方向下向きにx軸をとり, 屋根の位置を原点とする。 使用するゴムひもは,小球の位置 x が x≦L のとき, ゆるんだ状態 となり小球に力を及ぼさない。 一方,x>Lのとき, ゴムひもは伸 びて張力がはたらき,ばね定数kのばねとみなせる。 小球は鉛直方向にのみ運動し,地 面への衝突はないものとする。 重力加速度の大きさをgとする。 小球を屋根の位置(x=0) から静かにはなして落下させた。 x=Lの位置での小球の 速さはアである。 小球にはたらく張力の大きさが重力の大きさと等しい瞬間の位 置を x1 とすると,x1=イである。 x=x1 での小球の速さひ は, ウであ る。さらに小球は下降し,最下点に到達した後, 上昇した。 最下点の位置を x2 とすると, x2=エである。 また, 最初に x を小球が通過してから最下点を経て, 再び x にも どってくるまでに要した時間は オである。 [18 明治大〕 175,176 屋根 +0

回答募集中 回答数: 0