学年

質問の種類

物理 高校生

単振動の問題です 慣性力が働いているのに初めて衝突するまでの時間が何もない普通の平面の時と同じ時間になるのでしょうか?

(2) 図 1-2 に示すように、水平でなめらかな床の上を動く台車が台車 ある。 台車の床の上には質量 ma[kg]の小物体Aと質量 正の向き 小物体A 小物体B me [kg] (ma>me)の小物体Bが置かれている。 台車の床は 水平でなめらかである。 小物体Aはばね定数k [N/m〕 のばね の一端につながれ ばねの他端は台車の壁に固定されている。 小物体Bは小物体Aの右側に離れて置かれている。 ばねが自然 の長さで、台車と両小物体が静止していたときに力を台車に加 図 1-2 えて、台車を水平右向きに一定の加速度で運動させた。台車の加速度の大きさはα〔m/s'] であった。 小 物体Aが動き出した後で, 小物体Aの台車に対する相対速度がはじめてゼロになったときに小物体Aは小 物体Bに弾性衝突した。 この衝突は台車が等加速度運動を始めた時刻から [ 〔s] 経過したときに起 [[m〕 である。衝突直後の小物体Aの台車に対する 相対速度の大きさは (カ) [m/s)である。 衝突直後からは,衝突直後の台車の速度で台車が等速運動す るように台車に力を加え続けた。 小物体Aと小物体Bが再度衝突する前に、小物体Aの台車に対する相対 速度がゼロになった。このときのばねの伸縮量の大きさは (+) [m] である。 こり、衝突したときのばねの伸縮量の大きさは

回答募集中 回答数: 0
物理 高校生

物理、ばね、つり合い この問題の問5についてです。模範解答では、つり合いの式「mg+k(a+x)-N=0」から考えて導いていたのですが、私は物体A+B(2mg)とばね定数(k=mg/a)がつり合うことを考えて「F=kx」より「2mg=k・b」という式で答えを導きました。答え... 続きを読む

con 付け, ばねを鉛直に立てて, B を水平な床面上に置いたところ, ばねが自然の長 図5(a)のように, 軽いつるまきばねの両端に同じ質量mの物体A, B を取り さより だけ縮んだ状態でAが静止した。 B 図5(b)のように, A をつり合いの位置からさらにaだけ押し下げて静かには なすと,Bが床面に静止した状態でAは鉛直方向で単振動を行った。 重力加速度 の大きさをgとする。 kazmy 自然の長さ A m Bm 問3 次の文章の空欄 それぞれの直後の { 3 4 ばね 体Aの単振動の周期は つり合いの位置 床面 このばねのばね定数は 3 4 . my (hea) mg a 図5 mg ① 2a 3 }で囲んだ選択肢のうちから一つずつ選べ。 ② (3 1 2π 4 に入れる式として最も適当なものを, ② 2 mg a 2mg a A 2g a 9 2a Ng m ③2. m (b) a である。 したがって 物 kimg a Taza Foz となる。 T = 2h ^. kw. 厚 鹿 ひこ 問4 Aが図5(a)のつり合いの位置を通過するときの速さを表す式として正しい 5mg 5 ものを、次の①~⑤のうちから一つ選べ。 = Jag mad ① vga 2 0 √2a ga 3 my = my ² a mgenue 3 Mitwir acro ² F 問5 次にAを図5(a)のつり合いの位置から押し下げる距離を6にして静かに はなした。このとき,Aの運動中にBが床面から離れないためには,b はい くら以下でなければならないか。 最も適当なものを、次の①~⑥のうちか ら一つ選べ。 b≦ 6 a zyw² n² ③ ga 2 4 √ga 2ning=nox(base) begy 『 22 5 √3ga zazlatyu 3 √3a 42a ⑤ 15 2 6⑥ 3a

回答募集中 回答数: 0
物理 高校生

東工大物理の過去問で質問です 電磁気の問題(d)ですが、加える外力が−になる理由を知りたいです

44 平行板コンデンサーにおける振動 面積Sの同じ形状を持つ導体極板AとBが間隔dで向かい合わせに配置された平 行板コンデンサーを, 真空中に置く。 このコンデンサーの極板間に、導体極板と同じ 形状を持つ面積Sの金属板Pを, 極板Aから距離を隔てて極板に対して平行に置 く。 真空の誘電率をE0として以下の問に答えよ。 ただし, 極板端面および金属板端 面における電場の乱れはなく, 電気力線は極板間に限られるものとする。 導線, 極板, 金属板の抵抗,重力は無視する。 また金属板の厚さも無視する。 A [A] 図1のように,極板AとBは, スイッチ SW を介して接続され,極板Aは接 地されている。 L x d 1 コンデンサー 317 P SW (2012年度 第2問) B 図 1 (a) スイッチ SW が開いている時, 極板A, B間の電気容量を求めよ。 團 (b) スイッチ SW を閉じた後, 金属板Pを電気量Qの正電荷で帯電させる。 こ の電荷によって極板AとBに誘導される電気量を,それぞれ求めよ。 (c) 問(b)において, コンデンサーに蓄えられている静電エネルギーを求めよ。 團 (d) 問 (b)の状態から, 金属板Pを電気量Qの正電荷で帯電させたまま, 金属板 の位置をxからx+4xまで微小変位させる。 この変位による, コンデンサー に蓄えられている静電エネルギーの変化量を求めよ。 ただし, x, d に比べて |4x|は十分小さく. (△x) は無視できるものとする。 微小変位によりエネルギ ーが変化するということは, 金属板Pは力を受 ることを意味する。 微小 変位の間は金属板Pにはたらく力の大きさは一定であるとみなして, この力を 求めよ。ただし、極板AからBに向かう向きを力の正の向きとする。

回答募集中 回答数: 0
物理 高校生

黄色でマーカー引いたところがどうして2πx/16となるのか分からないです。教えてください🙇‍♀️

入 =2.0mである。 波の速さをv[m/s」として、 発展例題 30 正弦波の式物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s 0.100 であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y〔m〕 , 時刻t [s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sinを用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 おり, 速さは, v=· 図から, 波長 = 16m なので,周期Tは, T= 入_16 V 20 = 0.80s =20m/s 振動数fは, f= =1.25 1.3Hz T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2異なり, t=0の とき x=0の媒質の変位はy=0 なので, 位置 2 1 CATO -1 -2 y〔m〕 10 発展問題 356 進む向き 20 088 x(m) NEOT 126 W= 2π 77" xでの位相 (sin の角度部分)は、2016=7 8 と表される。 また, x=0 から x>0 に向かって まず波の山ができており、波の振幅が2.0mな ので,求める波形の式は, y=2.0 sin- DIVER A (3) 媒質の振動では1周期 (T= 0.80s) 経過する ( と位相が2進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、時刻t におけ る位相 (sin の角度部分) は, 2π- t =2.5t と (部分)は,270.80 表される。 また, x=0の媒質は, t = 0 から微 小時間後に負の向きに動くので、求める変位y の式は, y=-2.0sin 2.5t TIC 199 TX 8

回答募集中 回答数: 0