学年

質問の種類

数学 高校生

xやyの変域の条件を式から見つけて、作るのが苦手です。何が良い方法はないでしょうか?? この問題で言うと、y^2≧0 からxの範囲を定めるところ等です。

重要 例題 104 条件つきの最大・最小 (2) 文 00000 xyがx+2y=1 を満たすとき,2x+3yPの最大値と最小値を求めよ。 CHART & THINKING 条件の式 文字を減らす方針でいく 変域にも注意 p.124 重要例題 72 は条件式が1次式であったが, 2次式の場合も方針は同じ。 条件式を利用して,文字を減らす方針でいく。 このとき,次の2点に注意しよう。 [1] x, yのどちらを消去したらよいか? 重要 72 →2x+3y2のxは1次,yは2次である。x+2y=1から2=(xの式)としてyを消 L2次 去する。 [2] 残った文字の変域はどうなるか? 2次↑ 問題文にはx,yの変域が与えられていないが, (実数) 2≧0 を利用すると,消去する yの変域 (y'≧0) からxの変域がわかる。 解答 x+2y=1からy=1/2(1-x)・・・① 41 ←を消去する。 y2≧0 であるから 1x20 すなわち x²-1≤0 (x+1)(x-1)≦0 から -1≤x≤1 ...... 2 よって 2x+3y2=2x+2/22 (1-x2)=1/2x2+2x+ 3 ◆消去する文字の条件 (2≧0) を,残る文字 の条件(-1≦x≦1) にお き換える。 [s] 0 2 13 x- + 2 3 6 13f(x) 基本形に変形。 6 この式を f(x) とすると, ② の範囲で 20 -3x²+2x+3/23 21 f(x)はx=/2/23 で最大値 13 6 11 1 0 3 3 x=-1 で最小値 -2 12-3 X 1 == をとる。 また, ①から -2 5 x=1/3のとき y=1/2(1-1) - 18 +9 √10 -- 3 √(x-2)² + 13 よって y=± 6 x=-1 のとき y2=0 よって y=0 したがって (x, y) = (1/3, √10 13 土 で最大値 6 6 (x, y)=(-1, 0) で最小値 -2 ink 設問で要求されてい なくても,最大値・最小値 を与えるxyの値は示し ておくようにしよう。

解決済み 回答数: 1
数学 高校生

8P2(青いマーカー)が何を表しているのかがわかりませんあせ

す操作 が出る 散を求 2章 7 日本 例題 61 13桁の数を作る。 回出 1から9までの数字が書かれている9枚のカードから3枚のカードを抜き出 レ (1) (2) して並べ、 各桁の数の和の期待値を求めよ。 3桁の数の期待値を求めよ。 CHART & THINKING ○桁の数の期待値 各桁の数を確率変数とみる [類 神戸女学院大 ] p.438 基本事項 2| +, 百の位の数をそれぞれ X1,X2, X3 とすると, X1, X2, X3 は確率変数。 うに表すことができるだろうか? (1) 「各桁の数の和」 も, (2) 「3桁の数」 も確率変数である。 X1,X2, X3 を用いて,どのよ 考えよう。 求める期待値はそのまま計算するのは大変。 前の例題で学んだ期待値の性質を使うことを 事項 2 0 一の位、十の位,百の位の数をそれぞれX1,X2, X3 とする。 このとき, X1,X2, X3 の確率分布は次の式で表される。 回 ら, P(X=k)=P(X=k)=P(X=k) ( 6 は同 1 a P(X= (k=1,2,…, 9) 9P3 9 100 (1)X1,X2, X3 の期待値は E(X)=E(X2)=F(X)=210-11/9・10=5 k=1 k=n(n+1) k=1 期待値の性質。 -- 期待値の性質。 よって、 求める期待値は 20 E(X1+X2+X3)=E(Xi)+E(X2)+E(X3) =3.5=15 (100 0 (2) 3桁の数は X +10X2+100X3 と表されるから, 3200100- E(X1+10X2+100X3)=E(Xi)+10E (X2)+100E (X3) 求める期待値は ゆえに =(1+10+100)・5=555 =20 を代入して R=16 確率変数の和と積, 二項分布 PRACTICE 61 3 1から9までの番号を書いた9枚のカードがある。この中から,カードを戻さずに, 次々と4枚のカードを取り出す。 こうして得られたカードの番号を,取り出された順 に a,b,c,d とする。 (1)積 abcd が偶数となる確率を求めよ。西人が自 (2)千の位をα百の位をb, 十の位をc,一の位をdとおいて得られる4桁の数 N の期待値を求めよ。 (X) b

解決済み 回答数: 1
数学 高校生

(3)の問題です。解説をみたのですが、黄色の線を引いたところです! この4はどこから出できたのでしょうか?教えて欲しいです🙇‍♀️

重要 例題 33 同じものを含む円順列・じゅず順列 00000 ガラスでできた玉で, 赤色のものが6個, 黒色のものが2個, 透明なものが1 個ある。 玉には,中心を通って穴が開いているとする。 (1)これらを1列に並べる方法は何通りあるか。合 (2)これらを円形に並べる方法は何通りあるか。 (3) これらの玉に糸を通して首輪を作る方法は何通りあるか。 CHART & THINKING 基本18, 重要 22 (2)円形に並べるときは,1つのものを固定の考え方が有効。固定した玉以外の並び方を 考えるとき,どの玉を固定するのがよいだろうか? (3)「首輪を作る」とあるから,直ちに じゅず順列=円順列 2 でよいだろうか? すべて異なるもの なら、じゅず順列で解決するが,ここで は,同じものを含むからうまくいかない。 その理由を右の図をもとに考えてみよう。 答 000 左右対称 裏返すと同じ人 0 OL 9! 9.8.7 -=252 (通り) 同じものを含む順列。 6!2! 2.1 (1) 1列に並べる方法は (2)透明な玉1個を固定して、残り8個を並べると考えて 8! 8・7 -=28(通り) 6!2! 2.1 (3)(2)の28通りのうち,図 [1] のように 4通り [1] 左右対称になるものは よって,図[2]のように左右対称でない 円順列は 19文の [2] 赤玉6個、黒玉2個を1 列に並べる場合の数。 inf. (2) について, 解答編 p.213 にすべてのパターン の図を掲載した。 左右対称 でないものは、裏返すと一 致するものがペアで現れる ことを確認できるので参照 してほしい。 307 1章 3 組合せ 28-424 (通り) この24通りの1つ1つに対して, 裏 返すと一致するものが他に必ず1つ ずつあるから,首輪の作り方は 24 4+ =16(通り) 2 PRACTICE 330 する これらを1列に並べる方法は の下にひもを通し、

解決済み 回答数: 1
英語 高校生

英語の問が分からないので誰か解ける人解説込みでお願いします

CHAPTER 4 関連英文 "ninge som ow lit andarwood, dodal Passage 1: Australian Woman Who Died after Battling Rare Cancer Penned Inspirational Viral Letter: Each Day is a Gift' ・戦い戦闘 珍しい希少 brow adi b A 27-year-old Australian woman who lost her battle with a rare form of cancer asked her family to brovndaimuw loline how t share the last letter she wrote on her deathbed, 臨終、臨終の床 bed ada li vorf beslás ban obished alloft t Duralin 08 od nesto lana yad al Holly Butcher's last words soon went viral on Facebook after being posted on January 3, one day I rugged one dado dae Prow of an before she passed away, with more than 131,000 people sharing it on the social network. Niggad evil of bedbow Jaritannig gid sysd tabibl 在住居住者 ソーシャル・ネットワーク aid og H Holly, who resided in Grafton in New South Wales, Australia, began her lengthy note by saying that vidiberon and boa she planned to write "a bit of life advice." 実現する 変怪、奇怪な 死亡率 aude doos bad ead.. sailinil orie “It's a strange thing to realize and accept your mortality at 26 years young. It's just one of those things you ignore," she started. “The days tick by and you just expect they will keep on coming; until 20nd ablo ed ad ayawin lliw dad.blow on the unexpected happens." 予想外、予期せぬ 思いがけない 傷つきやすい静 予測不能不透明 Continuing, she wrote, “That's the thing about life. It is fragile, precious and unpredictable and each day is a gift, not a given right. I'm 27 now. I don't want to go. I love my life. I am happy. I owe that to my loved ones. But the control is out of my hands." i delo at guiwolle ads to doid W (B belustai tog Holly then encouraged her family and friends to stop whining “about ridiculous things. " 勇気づけられた 軽微な問題 あほらしい 提案された ばかばかしい 認める承認 “Be grateful for your minor issue and get over it," she suggested. “It's okay to acknowledge that something is annoying but try not to carry on about it and negatively affect other people's days." thegriot yllauen aw ob ネガティブに否定的H うるさ Holly also advised that people don't "obsess” over their bodies and what they eat.dla sV アドバイス 誓うる 助言 とりつくろう 取り憑 audul art ni sunitaoo lw asvil lieb m “I swear you will not be thinking of those things when it is your turn to go," she wrote. “It is all SO insignificant when you look at life as a whole.” 軽微、取るに足りない 微々たるもの After advising her family and friends to closed her letter by encouraging them to aged liw tedw toibong avawl se their money “on experiences” instead of presents, Holly use their merit huuore algoog art nodaum の代わりに ではなく give back. yasaesoonnu yilshom riodigandinemal 善行 ぜんこう “Oh and one last thing, if you can, do a good deed for humanity (and myself) and start regularly amaldory juoda daum col pai donating blood," she wrote. “It will make you feel good with the added bonus of saving lives.” 寄附 寄付 人命救助 命を救う

解決済み 回答数: 1
数学 高校生

数学Ⅱの不等式の証明で画像の(2)についての質問です。別解の解法の、左辺が負の時の場合分け[1]では、不等式は成り立つとありますが、この[1]の場合分けでは与式の|a|-|b|<=|a-b|の=は成り立っているのですか?

基本 例題 29 不等式の証明 (絶対値と不等式) 00000 次の不等式を証明せよ。 (1)|a+6|≦|a|+|6| (2)|a|-|6|≦|a-bl p.42 基本事項 4. 基本 28 CHART & THINKING 似た問題 1 結果を使う ② 方法をまねる (1)絶対値を含むので、このままでは差をとって考えにくい。 |A=A2 を利用すると,絶 対値の処理が容易になる。 よって、 平方の差を作ればよい。 (2)証明したい不等式の左辺は負の場合もあるから, 平方の差を作る方針は手間がかかり そうである (別解 参照)。 そこで, 不等式を変形すると |a|≧|a-6|+|01 ← (1) と似た形になることに着目。 ①の方針で考えられそうだが, どのように文字をおき換えると (1) を利用できるだろうか? 解 牛 (1)(|a|+|6|2-|a+b=(a+2|a||6|+16)-(a+b)2 よって =q2+2|46|+62-(a2+2ab+62 ) =2(labl-ab)≧0 (*) la+b≦(|a|+|6|)2 |a+6|≧0,|a|+|6|≧0 であるから |a+6|≦|a|+|6| 別解 -lal≦a≦|al, -66|6| であるから 辺々を加えて -(|a|+|6|)≦a+b≦|a|+|6| |a|+|6|≧0 であるから la+6|≦|a|+|6| (2)(1)の不等式の文字αを a-b におき換えて | (a-b)+6≦la-6|+|6| よって|a|≦la-6|+|6| ゆえに |a|-|6|≦la-6| 別解 [1] |a|-|6|<0 すなわち |a|< |6| のとき (左辺) < 0, (右辺) > 0 であるから不等式は成り立つ。 [2] |a|-|6|≧0 すなわち |a|≧|b のとき la-6-(|a|-161)=(ab)2-(α-2|ab|+62 ) よって =2(-ab+lab)≥0 (|a|-161)2≦la-612 |a|-|6|≦|a-6| |4|-161≧0,10-6≧0 であるから int A≧0 のとき -|A|≦A=|A| A<0 のとき -|A|=A<|A| であるから,一般に -|A|SA≦|A| 更にこれから |A|-A≧0, |A|+A≧0 c0 のとき cxcxlsc x-c, c≤x ⇒xc ②の方針。 α|-|6|が負 の場合も考えられるの で, 平方の差を作るには 場合分けが必要。 [in 等号成立条件 (1) は (*) から, lab=ab, すなわち, ab≧0 のとき。 よって, (2) は (6) ゆえに (a-b≧0 かつ60) または Cabs0 かつ 0

解決済み 回答数: 1
数学 高校生

数2の問題です。(2)の直線となる時はなぜr=-1となるのか教えてください🙇‍♀️🙏

解 追加 マートフォ 解説動画を 加費用なし ※解説動画は, の2次元コー 154 基本例題 94 2つの円の交点を通る円・直線 2つの円x2+y2=5 ...... ①, (x-1)+(y-2)²=4 (1)2つの円は,異なる2点で交わることを示せ。 (2)2つの円の交点を通る直線の方程式を求めよ。 ...... 000 ②について (3)2つの円の交点と点 (0, 3) を通る円の中心と半径を求めよ。 CHART & THINKING 1 方針・方 (1) 2つの円の半径と中心間の距離の関係を調べる。 重 ( に 基本77, p. 139 基本 a 放 共 (2),(3)2つの円の交点の座標を求めることは面倒。 そこで,次に示すか 129 基本 の考え方を応用してみよう。 2曲線 f(x, y) = 0, g(x,y)=0の交点を通る曲線 方程式 kf(x,y)+g(x,y)=0(kは定数) を考える →①,②を=0の形にして,k(x2+y2-5)+(x-1)+(y-2)2-4=0 ・③ とすると,③は2つの円の交点を通る図形を表す。 数学Ⅱ. 数学 トル)の解説 順次配信いた 黄チャー ■教科書 必須問 適度な 解答 れます。 学習内容 ■考える 例題の CHART CHART 2タイフ 考える 5 どこで (2)③が直線を表すときは? (3) ③が点 (0, 3) を通るときのkは? (1)円 ①,②の半径は順に√5,2である。 (-5' 3), 600 (SS)+"{(--= 2つの円の中心 (0,0),(1,2) 間の距離をdとする d=√12+22=√5から #l√5-21<d<√5 +2 よって,2円 ①,②は異なる2点で交わる。 (2)k(x2+y^-5)+(x-1)+(y-22-40 (kは定数)・ ...... ・③ Ir-rkdr inf. ③は円 0 ことはできない。 とすると③は2つの円① ② の交点を通る図形を表す。 これが直線となるのはk=-1のときであるから,③に③xy k=-1 を代入すると (x2+y2-5) +(x-1)²+(y-2)²-4=0 整理すると x+2y-3=0 なるように (2) ② 半径2 定める。 (3) したの 0 4( これなきる [ (1) 1 よ [1 inf (2) の直線 ①の円の方 [2] 2 立させて解くと x k=-1 円の交点、すな ①と②の められる。 = 29 9 エスビ 書をタブレ いつでも、 デジタルな (3)③が点 (0, 3) を通るとして ③に x=0,y=3 を代入して整理 すると4k-2=0 よってk=1/2 ① 半径5 C(0²+32-5) これを③に代入して整理すると(x-3)+(x-1) - 20 よって 3' 中心 ( 134 ) 半径29 3 [1]. (2)方 物綢 点を よっ PRAC PRACTICE 94 2つの円x2+y^=10, x2 +y²-2x+6y+ 2つの交点と原点を通る円の中心と半径を の2つの交点の座標を求めより よ。 放物線 るrの

解決済み 回答数: 1