学年

質問の種類

物理 高校生

ダイオードと豆電球の問題なのですが、Ⅲで答えがそのようになる理由がわからないので説明して頂きたいです。よろしくお願い致します。

第2問 ダイオードは,順方向に電圧を加えると, 流れる電流が電圧とともに急激に増大する特性をもつ。電球は,電圧 の上昇とともに熱としてエネルギーが失われるために、電圧とともに電流の上昇が徐々にゆるやかになる。電流と 電圧の特性が図2-1の曲線で表されるダイオード1個 (D)と、電流と電圧の特性が図2-1の曲線bで表され る特性の等しい電球 2個 (L, Lg)を, 図2-2のように起電力 V で内部抵抗が無視できる直流電源と接続した。 直流電源の電極側の点Bは接地した。 以下で、ダイオード、電球の抵抗値とは,それらの両端の電圧を,それら に流れている電流で割ったものとして定義する. I 図2-1に示す特性のダイオードと電球について以下の問いに答えよ。 (1) ダイオードの両端の電圧が0.70Vのときのダイオードの抵抗値はいくらか、 図2-1のグラフから読み 取った値を使って有効数字2桁で求めよ. (2)電圧が上昇するにつれて,ダイオードの抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない (3)電球の両端の電圧が0.30Vのときの電球の抵抗値はいくらか。 図2-1のグラフから読み取った値を 使って有効数字2桁で求めよ. (4) 電圧が上昇するにつれて、 電球の抵抗値はどのように変化するか、以下の選択肢から選べ. (ア) 急激に増大する (イ) 急激に減少する (ウ) 変化しない -4- 九州工改題) 電流 [A] 3.0 2.0 1.0 Dale A. 0 1.0 0 0.5 電圧[V] 図2-1 直流電源 V [V] B L1 L2 図 2-2 -5- b 1.5 2.0 A 09 1124 D 076

回答募集中 回答数: 0
数学 高校生

⑵(ii)の条件付き確率ですが、写真のように解きました。(そもそも計算ミスっててX=6の確率が違くてめっちゃわかりにくくてすいません💦) 計算してみて、1より大きくなったので、絶対違うのはわかるんですけど、なんで分母が1/6は違うんですか?(写真3枚目)

Date ④ 【4】 中の見えない袋の中に赤玉1個と白玉2個が入っている。このとき,次の試行 T:袋から玉を1個取り出し, 色を確認してから元に戻す をくり返し行う. このとき、次の各問いに答えよ. 結果のみではなく、考え方の筋道も記せ. (1) 試行Tを4回くり返すとき,次の確率を求めよ. (i) 4回とも同じ色の玉を取り出す確率. (ii) 4回目に取り出すのが2度目の赤玉である確率. () 赤玉を2回以上連続して取り出す確率. (2) 袋に黒玉を1個追加して、試行Tをくり返す. 1回の試行で赤玉を取り出すと2点、白玉を取り出すと1点もらえるが, 黒玉を 取り出すとそれまでに獲得した点数が0点になるとする. 試行を何回かくり返し, 獲得した点数の合計を X とする.たとえば,試行を5回くり返し, 白玉、白玉、黒玉,赤玉, 白玉 の順に玉を取り出すと、3回目に黒玉を取り出したのでそれまでの得点は0点とな り4回目の赤玉の2点と5回目の白玉の1点の合計から,X = 3 である. (i) 試行を7回くり返すとき,X = 0 である確率を求めよ. (五) 試行を7回くり返すとする.X = 6 である確率を求めよ. また, X = 6 である とき、少なくとも2回は赤玉が取り出されていた条件付き確率を求めよ。 () 試行を3回くり返すとき,X の期待値を求めよ. (50点)

解決済み 回答数: 1
数学 高校生

⑶教えてほしいです、ちなみに、自分で解いたのが写真3枚目なんですけど、答えは48でした

Date 【5】 図のように正五角形の頂点となる5つの地点 A, B, C,D,Eがある. これらは辺と対角線からなる10本の道 でつながっていて, 頂点間の移動はこれらの道を通って行 われる.なお,道の途中で他の道に移ることはできない. 次の各問いに答えよ. 結果のみではなく, 考え方の筋道も 記せ. B (1) Aから出発し, B, C, D, Eの4地点をちょうど一度 ずつ通ってからAに戻る道順を考える.例えば,以下は 条件を満たす道順のうちの3つである。 C A E A→B→C→D→E→A A→C→E→D→B→ A A→E→D→C→B→A (i) 条件を満たす道順の総数を求めよ. (ii) (i) のうち, C→Dという移動を含む道順の総数を求めよ. (2) Aから出発し, Bだけをちょうど二度通り, C,D,Eは一度だけ通ってAに戻 る道順を考える.例えば,以下は条件を満たす道順のうちの1つである. A→B→C→D→B→E→A ただし, BBのように、同じ点に留まるものは、二度通ったとはみなさない。 (i) 条件を満たす道順の総数を求めよ. (i) (1) のうち, .→B→E→B→・・・のように同じ道を続けて通る移動を含む道順 の総数を求めよ. (3) Aから出発し, B, C,D,Eのうち, 1地点だけをちょうど二度通り,残りの3 地点は一度だけ通ってAに戻る道順を考える.そのような道順のうち, 同じ道を 通らないような道順の総数を求めよ. 1年 駿台6月 ☆BCDEの順列を考えればよいだけ! 4! =4×3×2= 24 (ii) B [CD] E 31=3×2=6. ■(i) ○ ○ ^ ^ ^ 3:x462= 3×2×4 (50点) Cor Dor E となりあわないよう にする =36 先に他のを並べて、 その間を考える!!

解決済み 回答数: 1
数学 高校生

解答は私が(ⅲ)で書いてあるところをcos²θで書いてあるんですけど、私のやり方の(ⅰ)〜(ⅲ)でも最終的に共通範囲を求めるとsinθ=1は含まない形になっているのですが、丸になりますか?? お願いします🙇‍♀️

148─数学Ⅰ 練習 0°≦180° とする。 xの2次方程式x2+2(sin0)x+cos'0=0が, 異なる2つの実数解を 151 それらがともに負となるような母の値の範囲を求めよ。 f(x)=x2+2(sin0)x+cos20とし, 2次方程式f(x)=0の判別 ①グラフ利用 式をDとする。 2次方程式f(x) = 0 が異なる2つの負の実数 D, 軸, f(k) に 解をもつための条件は,放物線y=f(x) がx軸の負の部分と, 異なる2点で交わることである。 すなわち、次の [1], [2], [3] が同時に成り立つときである。 [1] D>0359180 [2] 軸がx < 0 の範囲にある (軸)<0 [3] f(0) > 0 また, 0°0180°のとき 0≦sin0≦1…... ① D [1] 4 -=sin20-1 cos20=sin²0-(1-sin20) =2sin20-1=(√2 sin0+1) (√2 sin0-1) 1 D> 0 から sin < 1 - <sine.. ② 2√2 [2] 放物線の軸は直線x=-sin 0 であるから -sin0 < 0 よって [3] f(0) >0 から cos²0>0 すなわち cos 0=0 sin0> 0 ③ 0° 0≦180°であるから 0+90°... ① ② ③ の共通範囲を求めて ..... ④ 1/12 <sin01 0°≦180°であるから 45°<<135° ④に注意して, 求めるの値の範囲は 45°<0<90° 90°<0 <135° 9 YA 135°1 45 -1 0

解決済み 回答数: 1
数学 高校生

F(x)=g(x)-f(x)にする理由って、ただx²の係数を正にした方がやりやすいからですか?? 私のやり方でもいいですか💦

練習 2つの2次関数f(x)=x2+2kx+2,g(x)=3x²+4x+3がある。 次の条件が成り立つような定数 131 んの値の範囲を求めよ。 (1) すべての実数xに対してf(x)<g(x)が成り立つ。 (2) ある実数xに対してf(x)>g(x)が成り立つ。 F(x)=g(x)-f(x) とすると F(x)=(3x2+4x+3)-(x2+2kx+2)=2x2-2(k-2)x+1 k-2\2k2-4k+2 = x 2 2 (1) すべての実数xに対してf(x)<g(x)が成り立つことは すべての実数xに対してF(x)>0, すなわち 0> (1 [F(x) の最小値] > 0 が成り立つことと同じである。 F(x)=g(x)-f(x) と するのは,F(x) の2次 の係数を正にするため。 別解 2次方程式 F(x)=0の判別式をD とすると >(1)(22/2={(k-2)}-2・1 5308-x=k²-4k+2 (1) [F(x) の最小値] > 0 D F(x)はx= k-2 k²-4k+2 のとき最小値 - をとるから =k2-4k+2 ] 2 2 k2-4k+2 >O 0-1+18- 2 の代わりに, D<0とし て進める。 ゆえに k2-4k+2<0 0=8+x k2-4k+2=0を解くと k=-(-2)±√(-2)2-1・2=2±√2 よって, 求めるkの値の範囲は (2) [F(x)の最小値] << 0 0=(I+x) の代わりに, D>0 とし 進める 2-√2 <k<2+√2 (2)ある実数x に対してf(x)>g(x)が成り立つことは, S- ある実数xに対してF(x) < 0, すなわち [F(x) の最小値]<0 が成り立つことと同じである。 a0=(0) k2-4k+2 0-(Ex)x Jot よって <0 2 ゆえに k2-4k+2>0 ←k-4k+2=0の解は よって, 求めるんの値の範囲は k<2-√2,2+√2 <k (1)で求めた。

解決済み 回答数: 1