学年

質問の種類

数学 高校生

どうしてn>=2にするんですか?

の意味」 an+g がある. 133 に関係している. 1次関数y=px+αの x られ、次に,a2 を x=2 =px+gによって、次々 特性方程式について考えて 特性方程式 a=pa+q 考え方 解答 ひく? Omnian brand とおくと an+2an+1=3(Aw+1 am) +2 bm+1=36+2, bm+1+1=3(bm+1) より、 特性 じだけ平行移動して n≧2 のときの したがって、数列{bm+1} は初項12,公比3の等比数列 b"=4.3"-1 bm+1=12・3" =4・3" 方程式だから、 b=az-a=3a1+2+3-a=11 b₁+1=12 -1 1 のように考える. /y=x40~ k=1 k=1 3漸化式と数学的帰納法 (83) B1-65 **** La=3, an+1=3a,+2n+3 で定義される数列{an} の一般項 α を求めよ. 例題 B1.34 漸化式 anti=pan+f(n) (カキ1) [答] 漸化式 n+1= 30+2n+3 において,nを1つ先に進めて as+2 と に関す る関係式を作り,差をとって、(a)に関する漸化式を導く。 2αに加える (または引く)nの1次式pn+g を決定することにより,( {a,+pn+g} が等比数列になるようにする。 an+1=3am+2n+3 ☆ = 30+2(n+1)+3 ②①より、 a+b=3+(4·3-1)=3+ ②は①のにn+1 を代入したもの 差を作り, nを消去 する. ①より, a2=3a,+2+3=14 α = 3α+2 より α=-1 12.3"=4・3・3"-1 =4.3" 第 1 章 12(3"-1-1) (n-1) 3-1. =6・3"-1-n-2=2・3"-n-2 =px+q(y-a=p(x-a)) n=1のとき, a=2・3'-1-2=3より成り立つ よって. an=2.3"-n-2 6・3"-1=2・3・3" - L =2.3" n=1のときを確認 W 軸方向にα y軸方向にα 平行移動 px 解答 2pg を定数とし, an+1+p(n+1) +q=3(a,+pn+g) とおくと, an+1=3a,+2pn+2g-p an+1+pn+p+g もとの漸化式と比較して, 2p=2, 2g-p=3より,p=1,g=2 したがって,att(n+1)+2=3(a+n+2), a+1+2=6 より, 数列{an+n+2}は初項 6,公比3の等比数列 =3a+3pn+3g よ り, an+1=3a+2pn +2q-p よって, an+n+2=63"23" より an=2.3"-n-2a=3 an+1=pan+f(n) (f(n)はnの1次式 p(x-a) Focus うが同じグラフ) このαを利用して 差を作り, n を消去して階差数列を利用して考える れを1つ先に進め 注》例題 B1.33 (p.B1-63) のように例題 B1.34 でも特性方程式を使うと, α=3a+2n+3 よ 3 3 5. a=-n- となる.これより,Qn+1+n+1/2=3am+n+ ある。 a)と変形でき, x=px+gの の特性方程式 練習 <数学的背 」として通り 順番になっていない 3 と変形できるが,等比数列を表していないので、このことを用いることはできない。 注意しよう. (p. B1-66 解説参照) a=2,an+1=2am-2n+1 (n=1,2,3, ・・・・・・) によって定められる数列{a}に B1.34 ついて, ** (1) bm=am-(an+β) とおいて、数列{bm}が等比数列になるように定数 αβ の値を定めよ. (2)一般項 α を求めよ. B1 B2 C1 (滋賀大) C2

解決済み 回答数: 1
数学 高校生

2枚目の2個目の注のやり方でやりたいのですがこの時1個目の解uってどうやって見つけますか?

TOMAC C2-38 (386) 第5章 複素数平 Think 例題 C2.19 方程式の解 (1) 方程式 2=1 を解け (2)883の4乗根を求めて、複素数平面上に図示せよ。 [考え方 α(複素数)の解を求めるには、αを極形式で表しを極形式 z=r(cos0+isin 0) (r>0) とおく。 2はドモアブルの定理を利用する. 両辺の絶対値と偏角を比較する. (2)883iのすべての解が8+8√3i の4乗根である。 (1)=r(cos0+isin0)(r>0,0≦6<2z) とおくと 2°=r(cos60+isin 60) 解答 また, 1=cos0+isin0 2 =1であるから, **** ↑極形式で表す時の決まりみたいなも 0.2.4... 両辺を 極形式で 比較 絶対値 r(cos60+isin60)=cos0+isin 0 両辺の絶対値と偏角を比較して, r=1 r>0より。 r=1 比較 60=2xk (kは整数) より 0=xk 3 偏数 3 ここで、002、すなわち,0≦x<2であるから、これを満たす kの値は, k= 0, 1,2,3,4,5 したがって、2=1の解は、z=1-{cos(nxk)+isin(xk)} と表せるの で,求める解は, + 0 =1200 k=0 のとき zo=cos0+isin0=1sin k=1のとき, Z₁=cos+isin n_13 + -i 3 2 2 k=2のとき, +2 [2]]] 22=cos+isin-=- 3 1-2 √3. + i 2 k=3のとき,z3=cos+isinz=-1 k=4 のとき, 4 z4=cosgrtisingn= 4 [32 12 √3 k=5のとき, よって, 土 -i, 100円 2 24=-8+8 (2) 比較 絶対感 25=COSπtisin π= 1v3 z=±1, 8+8√3iの4乗根を z= (coso+isin) (r>0,0≦02) とおくと、 ź^=y(cos40 + isin40)=18+8 1001 010 8+8/3i=16/cos/3rtisin/27) であり2=-8+8/3i であるから、 r(cos40+isin40)=16(cos / n+isin / 27 ) 両辺の絶対値と偏角を比較して,r=16 r>0より, r=2 5 5 13 √3. -i 31 2 2 sino. + -i √3 2 2 それ (T) BS OP (S)

解決済み 回答数: 1
数学 高校生

なぜPF:PF'=FQ:F'Qだと、点Pにおける接戦が角FPF'の外角を2等分するということが分かるのですか? 回答よろしくお願いします。

練習 Step Up 末広 C2-136 (414) 第6章 式と曲線 D 15 (i) k> のとき =(a²-√a²-b²x): (a²+√ a²-b²+x1) 第6章 式と曲線 Check! 練習 (415) C2-137 Step Up 米問題 ①と②の共有点はない。 よって、(i)(面)より。 共有点の個数は, √15 k<- のとき, 2個 2 15 k=-- のとき. 1個 2 15 k>-- のとき, 個 2 C2.65 =1 (1) (460)焦点をF.F' とする.楕円上の点P (x,y)におけ する。 ある接線は FPF' の外角を2等分することを証明せよ. ただし, 0<x<a, yi>0 と xx yy 楕円上の点P(x1,y) における接線の方程式は, ......① a² b² =1 y=0 とおくと, x0より。 a² x= x₁ つまり、接線とx軸との交点をQ とすると,0 (2) 双曲線 61 (a>060) の焦点をF,F' とする. 双曲線上の点P (x1,y) における接線はFPF' を2等分することを証明せよ。ただし、とす る. (1) 焦点をF(60) F' (630) とする. 点(x,y)は楕円上の点より、 a²b つまり、 よって. PF'= (va'-b-x)'+yi =(√a²-b²-x1)²+ b²x² a 351-1 0<x<aよりacoであるから, となり, a² FQ: x1 √a²-b². F'Q=a+√a²-b² FQ: F'Q=(a√a²-6 x X1 =(a²-√a²-6x₁); (a²+√√a²-b³·x1) ② ① ② より PF:PF'=FQF'Q が成立する. したがって, 0<x<ay>0 のとき 楕円上の点 P(x1,y) における接線は, <FPF' の外角を2等分する (2)焦点をF(v'+b20) F^(-√'+120) とする. 点P(x1, y) は双曲線上の点より. つまり. よって, (5) +24 人 b2 PF'=(va'+62-x+y^ =(va'+b^-x^2+ b = 10-2+bx+a^ b2\x x²-2√3+62x1+α -07101 A2017 160 6 a √√√a-b PF= a ここで, 0<x<a で あり 34 ary <1 P(x, y) a Ka>b>0より. √a²-b 幻 <a で a あるから, √a-62 PF=α- F(VG-6,0) a F(√a-b²,0) また, PF +PF'=2a であるから, PF'=2a-PF=a+ √a²-b² -x1 a よって, a PF: PF'-(6-10-82.): (a + √4-82.) √a²-b² a D PF= a √√a+b x-a a √√a²+b² a x-a ここで,x>a>0で a a あり、 √√a²+b² ->1であ a P(x, y) るから, PF=YQ'+6? F^(-vo +6.0) QF(vo+6.0) a また,x>a より PF'-PF=2a であるか ら PF'=PF +2a= よって a+b -x+a a 80 <a>0b>0より a a 6 B1 B2 [C C2

解決済み 回答数: 1