学年

質問の種類

数学 高校生

数三積分の問題なのですが、オレンジペンで囲んである部分がわからないです。逆関数の積分をどう扱えばいいのか分からないので教えて頂きたいです。

逆関数と積分の等式の証明 重要 例題 222 O tinde ① f(x)= のとき. y=f(x) の逆関数y=g(x) を求めよ。 2 (1) f(x), g(x) に対し、次の等式が成り立つことを示せ。 Sof(x)dx+$70g(x)dx=bf(b)-af(a) 解答 指針▷ (1) 関数y=f(x) の逆関数を求めるには,y=f(x) をxについて解き,xとyを交換する。 (p.134 基本例題 81 参照。) (2) (1) の結果を直接左辺に代入してもよいが,逆関数の性質 y=g(x)x=g(y) を利用。 すなわちy=g(x)=x=f(y) に注目して, 置換積分法により 左辺の第2 7 ((1) ex ex+1 項 Song(x)dx を変形することを考える。 f(a) ex ex+1 y= ①から ②から *****. p.339 基本事項1. 基本 81 e-∞ ex lin erão tra l the extl X-8 ①の値域は 0<y<1 ゆえに よって (ex+1)y=e* y e² = 1 = y I= ********* V (2) (1-y)ex=y x=logi-y 求める逆関数は、xとyを入れ替えて g(x)=log 81²x (2) Sing(x)dx とする。 f(x) は g(x) の逆関数であるから, y=g(x) よりx=f(y) ゆえに dx=f'(y)dybe 2 また g(f(a))=a.g(f(b))=b2xf(a)→f(b) xとyの対応は右のようになる。 よって 店 tree 1=S_yf'(v)dy=[yf(y)]* -S" f(y)dy =bf(b)-af(a)-f(x) dx ゆえに Sof(x)dx+g(x)dx=bf (b) -af(a) a → b #104 T STS LORAC まず、値域を調べておく。 xについて解く。 「両辺の自然対数をとる。 loge*=x 定義域は 0<x<1 f(b) YA 1 f(a) T= 0 〔東北大〕 12 a T S x s=Sof(x)dx. T-Shing(x)dx ƒ(a) (2) の等式の左辺の積分は, 上の図のように表される。 (0<a<bのとき) 345 7章 34 定積分の置換積分法・部分積分法

解決済み 回答数: 1
数学 高校生

波線部のt=の式のところがなぜそうなるのかがわかりません。√2xはどこからきたのでしょうか? また、右図の意味もいまいちよくわかりません。全体の長さは√2xではなく2√2なのではないのですか?

00000 重要 例題 280 直線y=xの周りの回転体の体積 不等式 x-x≦y≦x で表される座標平面上の領域を,直線y=xの周りに1回転 A して得られる回転体の体積Vを求めよ。 [学習院大 ] 基本 272 指針▷ これまではx軸またはy軸の周りの回転体の体積を扱ってきたが,この例題では直線 y=xの周りの回転体である。 したがって,回転体の断面積や積分変数は回転軸(直線y=x) に対応して考えることに 体積 断面積をつかむ の方針 なる。 そこで,解答の上側の図のように放物線上の点Pから直線y=xに垂線PQを引いて、 PQ=h, 0Q=t とし,積分変数をt(0≦t≦2√2) とした定積分を考える。 このとき, 断面は線分PQ を半径とする円になるから, その面積は πh² 解答 題意の領域は、右図の赤く塗った部分 である。 放物線y=x²-x 上の点 P(x, x2-x) (0≦x≦2) から直線y=x に垂線PQを引き, PQ=h, OQ=t (0≦t≦2√2) とする。 このとき h=x-(x2-x)_2x-x2 √2 t=√2x-h=√2x-²x=2x² = √2 ゆえに dt=√2xdx tとxの対応は表のようになるから 2 コ V=x√²h²dt =T √2 2 (2x-x2) 2 √2xdx π = √2 S² (4x² - 4x² + x³) dx π π 6 12 *√/₂2 [× ¹ — ²/² x ² + x ² ] ² = √2-16-8√/2 15 15 π YA y=x2-xy=x 2 2√2 √2 x O he 45° 全体の長さ 1 2√2LF? P(x, x2-x) 2 t x 0 y=x x (x,x) 1 hx-(x²-x) P(x,x2-x) 02√2 2 (*) hは,直線y=xとx軸 の正の向きとのなす角が45° であることに注目して求めた。 なお,以下の点と直線の距離 の公式を利用してもよい。 点 (xo,yo) から直線 lax+by+c=0 に引いた垂線 の長さは ax+by+cl √a²+b² 上から2番目の図参照。 htはxの式になるから, 体積Vの計算(tでの定積 分) を, 置換積分法により xでの定積分にもち込む。 (検討) 放物線y=x2-xについて, y'=2x-1からx=0のとき y'=-1 よって、原点における接線は, 直線y=x と垂直。 1-03- 1S

回答募集中 回答数: 0
数学 高校生

(2)の丸く囲ったxdy は部分がわかりません。 このいきなり出てきたxdy はなんですか? Yの式にしたいのは分かるんですけど、なぜこうなるのか分かりません。

基本例題 次の曲線と直線で囲まれた部分の面積Sを求めよ。 [ 257 曲線x=g(y) とx軸の間の面積 (1) y=elogx, y=-1, y=2e,y軸 (2) y=-cosx (0≤x≤7), 解答 (1) y=elogx から -1≦y≦2e で常に x>0 2e 1 *₂7_S=S²,₁e²dy=[e•e²] ()=e•e² - e•e=² =e³-e¹- よって (2)y=-cosx から よって 指針まず, 曲線の概形をかき, 曲線と直線や座標軸との交点を調べる。 (1) yelogxをxについて解き,yで積分するとよい。 ・・・・xについての積分で面積を求めるよりも、計算がらくになる。 = 2 (2)(1) と同じように考えても,高校数学の範囲では y=-cosx を x=g(y) の形にはできない。そこで置換積分法を利用する。 (1),(2) ともに別解のような, 長方形の面積から引く方法 ABRONAL: 1) でもよい。 k x=ee ---xcosx]+S | COS π = +²+0= 3 6 s-S²(xdy-S² xsinx dx S 2 π · — ²/² π · ( − 1 1/2 ) + + 5 + 1/1/2 . 3 TC =-=-=1/2/₁ 2' dy=sinxdx 2/3 1/3 一 +[sinx 2 よって cosxdx y=- 2/3 43 YA 2e O 1 2,y軸 y YA 1 |1 2. O -e2. Spic=x 1 S 2e+1 '1 2 I π 3 e2 8√3, Sa $30 ! p.424 基本事項 ③ 82200000 -2-3 23 y=–cost ...... fibr π x =e³_e¹-1 1 1 2 2 (2) の 別解 (上と同じ方法) 1_ _‚ ²², s=²×·(²+1) =te π 2 S= → π 3 3 -cosx++)dx= YA d =2e³+e² 3 重要 263 (1) 別解 (長方形の面積か ら引く方法) S=e²(2e+1) 2 x=g(y) -Se-(elogx+1)dx -[e(xlogx-x)+x s=Sg(y)dy 常に g(y)≥0 - + sinx 427 81 3 面 和

解決済み 回答数: 1
数学 高校生

(2)についてdyする理由は分かるんですが、なぜxについてdyなんですか?-cosxじゃない理由を教えてください。

-f(x) ex re I 117× 基本例題257 曲線x=g(y) とy軸の間の面積 次の曲線と直線で囲まれた部分の面積Sを求めよ。 y=elogx, y=-1, y=2e, y 軸 (1) (2) y=–COSA 指針≫ まず, 曲線の概形をかき, 曲線と直線や座標軸との交点を調べる。 (1) y=elogxをxについて解き, yで積分するとよい。 でもよい。 解答 (1) y=elogx から (0≤x≤π), y=- 1 2 y=-. xについての積分で面積を求めるよりも、計算がらくになる。 (2) (1)と同じように考えても,高校数学の範囲ではy=-cos x を x=g(y) の形にはできない。そこで置換積分法を利用する。 (1),(2) ともに別解のような,長方形の面積から引く 方法 1≦y≦2e で常に x>0 2e よってS=Set s=S²₁₁ e ² dy=[e·e ² ] ²₁ =e.e² - e•e-² =e³-e¹-1 x=e² (2)y=-cosx から よって s=f, xdy=San xsinxdx 3 =[-x cos.x], " + S* 3 COS X =+=+0=72 dy=sinxdx =xl-v 2 π = - 1²/31 (-1/2) ++ 357 - 1²/24 (3) y=tanx cos xdx 1/² T 2373 +|sinx| J 練習 257 (1) x=y²-2y-3, y=-x-1 (2) y= NEJST y=1, y=- 2' (0≦x< </ (0<x< 1/7). YA 2e 0 V軸 y 0 S 1 1 2 T y x S 1 2' y軸 12 2 e² 1 2e+1 Elm 1 2 3 ! e² ↑ x=ee 17/08 - 12/20 π π 3 3 次の曲線と直線で囲まれた部分の面積Sを求めよ。 #d Fam Ⅱ 2 p.424 基本事項 ③3 y=–cost 1 2 y=√3, y=1, y 軸 π x y =2e³+e² d =FF 重要 263 x=g(y) (1) の 別解 (長方形の面積か ら引く方法) 常に g(y)≥0 s=Sg(y)dy S=e²(2e+1) re² -Set (elogx+1)dx -[e(xlogx-x)+x]+ sinx =e³-e¹-² (2) の 別解 (上と同じ方法) S= = ²/37 •( ²1² + ²/² ) * * -—-S₁²(−cos x + 1)dx 1 1 30. 37503825 427 Op.440 EX213 8章 38 面積

未解決 回答数: 1