学年

質問の種類

数学 高校生

共通接線、微分の範囲の問題です。 (3)です。 ①D:yがなんでこうなるかわからない ②Dがx軸に接する時なぜ頂点のy座標が0になるのですか? 以上2点についてよろしくお願いいたします。

144 第6章 基礎問 90 共通接線 2つの曲線 C: y=x', D:y=x2+px+g がある. (1)△C上の点P(a, α) における接線を求めよ >(2) 曲線DはPを通り, DのPにおける接線は1と一致するこ のとき,b,g をαで表せ. (2)のとき,Dがx軸に接するようなαの値を求めよ. (2) 2つの曲線 C, D が共通の接線をもっているということです が,共通接線には次の2つの形があります。 (I型) P (Ⅱ型) y=f(x) y=g(x) y=f(x) y=9(x) P 192 アイは よって, (3) D:y= Dがx軸 : g- よって . C 注 a= は,図 である (2)ホ α 違いは,接点が一致しているか, 一致していないかで,この問題は接点がP で一致しているので(I型)になります。 f(エ f'( どちらの型も、接線をそれぞれ求めて傾きとり切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう。 解答は、この公式を知らないという前提で作ってあります。 解答 (1)y=x3より,y'=3x2 だから,P(a,d) における接線は, y-d=3a²(x-a) :.l:y=3ax-2a3 ...... ア 186 ポイン (2)PはD上にあるので,a2+pa+q=a...... ① また,y=x+px+α より y'=2x+p だから, Pにおける接線は,y-d=(2a+b)(x-a) :.l:y=(2a+p)x+a-2a²-pa y=(2a+p)x+q-a² ...... ( DE ) 演習問題 9

解決済み 回答数: 1
数学 高校生

⑴なのですがaの範囲を求めに行く過程で模範解答とは違って判別式を使ってときました。答えは合っているのですが考え方として合っているのか心配です。判別式で解いても問題ないのでしょうか。またこの答え方で減点なく丸が貰えますか。この二つ、よろしくお願いします。

演習 例題 131 2つの2次関数の大小関係 (1) 00000 2つの2次関数f(x)=x2+2ax+25,g(x)=-x2+4ax-25 がある。 次の条件が 成り立つような定数αの値の範囲を求めよ。 (1) すべての実数xに対してf(x)>g(x) が成り立つ。 (2)ある実数xに対してf(x) <g(x) が成り立つ。 基本115 f(x うな ((1) 指 指針 y=f(x), y=g(x) それぞれのグラフを考 えるのではなく,F(x)=f(x)-g(x) とし, f(x), g(x) の条件をF(x) の条件におき 換えて考える。 (1) y=f(x) y=F(x) (1) すべての実数xに対してf(x)>g(x) すべての実数xに対してF(x)>0 y=g(x)/ + (2) (2)ある実数xに対してf(x)<g(x) y=f(x) y=F(x) ⇔ある実数xに対してF(x) <0 大 このようにおき換えて, F(x) の最小値を 考えることでαの値の範囲を求める。 小 y=g(x) O [補足] 例題 115 で学んだように, 判別式D の符号に着目してもよい。 F(x)=f(x)-g(x) とすると 解答 F(x)=2x2ax+50=2(x-2) - 10/27 +5 - 0²- 50 (1) すべての実数xに対してf(x)>g(x)が成り立つことは, すべての実数xに対してF(x)>0, すなわち [F(x) の最小値] > 0 が成り立つことと同じである。 F(x)はx=1/2で最小値 a² 2 +50 をとるから a² - +50> 0 よって1012+5 - よって (a+10)(a-10)<0 ゆえに -10<a<10 (2)ある実数xに対してf(x) <g(x) が成り立つことは, ある実数xに対してF(x) < 0, すなわち [F(x)の最小値] <0 が成り立つことと同じである。 a² +50<0 晶検討 「ある xについて が成り立つ」と は よって a<-10, 10<a ゆえに (a+10)(a-10)>0 を満たす が少なくとも1つ あるということ である。 ④ 131 つような定数kの値の範囲を求めよ。 練習 2つの2次関数f(x)=x2+2kx+2, g(x)=3x2+4x+3がある。 次の条件が成り立 (1) すべての実数xに対してf(x) <g(x)が成り立つ。 (2)ある実数xに対してf(x)>g(x)が成り立つ。

解決済み 回答数: 1