学年

質問の種類

数学 高校生

高校数学です。波線の部分が分かりません。解説お願いします。

実戦問題 91 2つの放物線で囲まれた図形の面積の最大・最小 2つの放物線y=-x+10x-1 … ① および y=x+2(p+2)x + -6p ・・・ ② が異なる2点で交わっている。 (1) 定数の値の範囲は アイ <<ウである。 (2) 定数がアイ <<ウの範囲で変化するとき、放物線 ②の頂点Pは直線 y=エオカキの クケ <x<コサの部分を動く。 (3) 放物線 ①,②の交点のx座標をそれぞれα, β (α < β) とおく。 放物線 ①,② で囲まれた図形の面積Sをα β を用い て表すと, S= P (B-α) シ ス となるから 面積Sはチのとき最大値 をとる。 となる。また, (B-α) の値をを用いて表すと, (β-α)2=セがソ [ツテ ト p+ 解答 (1) ①,② を連立して -x+10x -1 = x2 +2(p+2)x + -6p 整理して 2x2+2(p-3)x + p2 -6p+1= 0 ... 3 ①,②が異なる2点で交わるとき, 方程式 ③ の判別式をDとすると D 083+=(-3)² − 2(p² − 6p+1) > 0 -p2+6p +7>0より よって, 求めるの値の範囲は (2)②を変形して + (+1) (p-7) < 0 -1<p<7 AS YOU 1 y={x+(力+2)}-p+2)+p-6p=(x+p+2)-10p-4 よって、放物線 ②の頂点Pの座標を(X, Y) とおくと 放物線 ②の頂点は Key X=-p-2... ④, Y=-10p-4 … ⑤ ④ より =-X-2 これを⑤に代入して Y = 10X +16 また, -1<< 7 であるから -1 <-X-2 <7 より -9 < X < -1 (+) ゆえに、点Pは直線 y=10x+16の-9 <x<-1 の部分を動く。 (3) 2次方程式 ③ の異なる2つの実数解をα, β (α <β) とおくと、求 める面積Sは (-2,-10p-4) 24 ① S = = "[(x+10x-1){x+2(p+2)x + p°-6p}]}dx >>- ( ② -J"{2x2+2(-3)x+p-6p+1}dx Key =-2/(x-a)(x-β)dx=-2・ 2.{1/(-a)}=(-a) 5 x 3 また、③において, 解と係数の関係により α+β= -(p-3), aβ= 20 p2-6p+1 H 2次方程式 ax2+bx+c=0 の2つの解をα β とすると b よって (β-α) = (a +B)-4aβ={-(-3)}2-4・ p2-6p+1 a+β=- a' a TOY=-p²+6p+7=-(-3)²+16 =128 2 (B-α)24 よって, -1 <<7において, (β-α)2はp=3のとき最大値16を とるから, β-α >0より, β-αは p = 3 のとき最大値4をとる。 したがって, 放物線 ① ② で囲まれた図形の面積Sは 16--- 43 p = 3 のとき 最大値 64 3 3 攻略のカギ! 10 3 p Key 1点Pの軌跡は,P(x,y)とおいて,xの関係式を導け30 (p.138) K2 放物線と1直線、2放物線で囲まれた図形の面積は,∫(x-α)(x-B)dx = 1/2(B-α) を利用せよ - 42 (p.171)

未解決 回答数: 0
数学 高校生

高校数学です。(2)でなぜsin2θ=1が2θ=π/2,5π/2になるのか分かりません…。解説お願いします!🙇

満たす。このことから, 0の値の範囲を求めると, π I (2) x = sin が方程式 (*)の解となるような角0は全部で 実戦問題 73 三角関数を含む方程式・不等式 0は 0≦02 を満たす定数とし, xの2次方程式 x2+2(1-cos0)x + 3-sin20-2sin20-2sin0 = 0 ... (*)を考える。 (1) 方程式(*)が異なる2つの実数解をもつとき, 0 は不等式 2sin20+アsing-| オ サ個ある。 π. キ ケ <0 コ coso ウ>0を πである。 <8< [シス +√ さらに0が鋭角のとき, 方程式(*)のx = sin0 以外の解はx= である。 ソ (八 解答 のめ向きとな角を (1)x2次方程式f(x)=0が異なる2つの実数解をもつとき,判別 式をDとすると D> 0 D 4 (17 0 <= 2sin20+2sin0-2cose + (sin 20+ cos20)-2 =(1-cose)2-(3-sin'0-2sin20-2sin0) sin20=2sinocoso = 2sin20+2sin0-2 cos 0-1 43 よって =4sincos0+2sin0-2cos0-1 (2sin-1) (2cos0+1) AB0⇔ IT よって(2sin-1)(2cos0 + 1) > 0 0≦02πの範囲に注意して a nizx805+ 200xA>0 [A<0 または B>0 \B<0 196 14 I 7.803 +xnia 1 1 (i) sin0 > sino > かつ cost> - のとき 2 2 4/3 11 Key 1 1 sin0 > π 5 Tenia \) より <8> << 2 6 6+ singsing 1 cos> より 2 3 050<<<2 4 3 nie) -1- 14 7 よってこの共通部分は π 2 <8< π 06 長く曰く あるから cose > a 20 12 y 1 1 (ii) sin0 < かつ cosθ<- のとき 1 x 2 2 a Key 1 sin0 < より 1 5 <0 <2π 2 6'6 --sine< 2 2 cose <- より 4大量 π 2 3 8 4 よって,この共通部分は π 6 (i), (ii) より 若く 5 4 π 3 (2) x = sin0 が方程式(*) の解であるとき <-(cos< 整理すると,-3(sin26-1)= 0 より sin20 = 1 0≦204πの範囲で 20 = π 2'2 よって、条件を満たす 0 は 0= π 5 4'4 πの2個。 sin°0+2(1-cosf)sinQ+3-sin'0-2sin20-2sin0=0 <2nis 10 1 x 20の値のとり得る範囲に注意 する。 ① さらに0が鋭角のとき, 0 = であるから 三角の値は、 π 4 方程式(*)は+2-√2)x+1/2(1-2√2)=0 1 左辺を因数分解して x- 1 2 = 0 方程式(*)はx=sin-=- √2 π よって,x=sinz = 上の2頭のな = 1 √2 以外の解はx= 1 -2= 4+√2 を解にもつことがわかってい るから,因数分解する。 攻略のカギ! niey=ad+(nian Key 1 三角関数を含む方程式・不等式は,単位円を利用せよ 関 (1) (2

未解決 回答数: 1
数学 高校生

なぜ最大値Мは2の場合分けをし、最小値мは4で場合分けをするのでしょうか?

実戦問題 10軸が変化する2次関数の最大・最小 αを定数とする。 2次関数 f(x)=x2+2ax+3a² -4 の区間 0 x 4 における最大値を M, 最小値をmとする。 (1)a=-1 のとき,M=ア, m= イウ である。よやうく よか (2) 放物線y=f(x) の頂点の座標は I a, オ a² - 力 )であるから, 最大値 M は α キク のとき M=T α キクのとき M= a² + シ a+ スセとなる。 また, 最小値mは α <ソタ のとき m = ■チ a² + ツ α+テト [ソタ Sa<ナ のとき m= Ja²- a≧ナのとき となる。 m=ネ Ja² (3) αの値が変化するとき,M-mは α = ハヒのとき最小値をとる。 解答 (1)a=1のとき f(x)=x2-2x-1=(x-1)2-2 よって, f(x) は区間 0≦x≦4 において 最大値 Mf (4) = 7, 最小値m=f(1)=-2 (2) f(x)=(x+α)2 + 24°-4 と変形できるから y y=Ax) [01 4x 放物線y=f(x) の頂点の座標は (-a, 2a²-4) -2 Kev x 区間 0≦x≦4の中央の値はx=2であるから,f(x) の区間 M は における最大値 (i) y=f(x) (i) a > 2 すなわち a < 2 のとき M=f(0)=3a2-4 (ii) すなわち a≧-2のとき M=f(4)=3a2+8a + 12 の≦2 次に,f(x) の区間 0≦x≦4 における最小値mは 大 0 214 x a Kev () -α > 4 すなわちα <4のとき (ii) y y=f(x)! m=f(4)=3a² + 8a + 12 (iv) 0 < a4 すなわち 4≦a <0 のとき m = f(-a)=2a²-4 ≤0 (v) as すなわち a≧0 のとき m = f(0)=3a²-4 (3) (2) の (i)~(v)より, M-m の値は (ア) a <-4のとき M-m=3a²-4-(3a²+8a +12) =-8a-16 (イ) -4≦a <-2のとき M-m 3a²-4-(2a2-4) = a² (ウ) −2≦a < 0 のとき M-m=3a+8a + 12-(2-4) = (a+4)2 (エ) a≧0 のとき M-m 3a²+8a+ 12-(3a² - 4) =8a+16 (ア)~(エ)より, M-mのグラフは上の図のようになる。 グラフより, M-mは α=-2 のとき 最小値4 攻略のカギ! 4 20 ( y M-m4 y=f(x) の 夢 0 4+ -a 16 (iv) YA y=f(x) 14 (v) 43 2 10 a y=f(x) By 1 区間における2次関数の最大・最小は、軸と区間の位置関係を考えよ 7 (p.18) -a4 4

回答募集中 回答数: 0