学年

質問の種類

数学 高校生

68. 表を書けばいいと思いつけばあとは簡単だと思うものの、表を書くことを閃く自信がないのですが高次不等式の問題は表を書いて解くのが一番いい方法ですか?

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, α は正の定数とする。 x-(a+1)x2+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-ar)(x-B)(x-x)≧0の形に変形したら、後は各因数x-α, x-px-yの符号を割 て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α,ß, yに文字が含まれるときは,α, B, yの大小関係に注意する。・・・・・・ 解答 不等式の左辺をα について整理すると (x²-x²-2x)-(x²-x-2) a ≤0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 0<a<2のときx-lax2+ a=2のとき x≦-1, x=2 2 <a のとき x≤-1, 2≤x≤a よって [1] 0<a<2 右の表から, 解は x≦-1, a≦x≦2 [2] a=2のとき x-a 不等式は (x+1)(x-2)=0となり,x-2 (x-2)^2≧0であるから f(x) x-2=0 または x+1≧0 (20)+(1-8) (D-1)+(ーー) α<β<yのとき (x-a)(x-β)(x-x)≧0の解は (x-a)(x-β) (x-x) ≧0の解は x x+1 a≤x≤ß, r≤x xha, Baxy [1] f(x)=(x+1)(x-2)(x-a) x (01 検討 3 次不等式を3次関数のグラフで考える 3次関数y=f(x)のグラフについては,第6章の微分法のところで 詳しく学習するが、グラフの概形は右の図のようになる。 このグラフから 4x²-x²-2x x-2 x-a f(x) =x(x-x-2) =x(x+1)(x-2) ゆえに, 解は x≤-1, x=2(x+1+0+(1+6)S-A+brys [3] 2<αのとき 右の表から,解は x-1,2≦x≦a [1]~[3] から 求める解は - 0 0 0 00000 ... a ... 2 …. + + + + + 0 + ++ [3] f(x)=(x+1)(x-2)(x-a) ... -1... 20 - 0 + 0 - + H + 28. 11.03 - 0 + 0 + 22 +0|0 + + FIT - B 1 a + + 0+ 0 + 2

回答募集中 回答数: 0
数学 大学生・専門学校生・社会人

 高校数学Ⅲ、微分法の応用問題です。画像右側の「課題4」の解き方が分かりません。解答法を教えて頂けますと助かります。よろしくお願いします。

196 15 20 ○○○○2 最短のケーブルで都市をつなぐ方法 3つの都市の位置を地図上で確認したところ, 右のような△ABC の頂点上にあった。 このと き、どのように結べばケーブルの長さの総和が 10 最小になるだろうか。 座標平面を利用して考え B てみよう。 学習のテーマ 微分法の応用 複数の都市をネットワーク回線でつなげることを考える。このとき, コ ストを低くするためには、つなげるケーブルの長さの総和をできるだけ 短くする必要がある。 各都市をどのようにケーブルでつなげればよいか 考えてみよう。 H 3 3点をA(0, 3), B(2,0),C(20) とする。 △ABC の周および内部 に点Pをとるとき, AP+BP+CPが最小となる点Pの座標と, その ときの AP + BP + CP の最小値を求めてみよう。 ただし, AP +BP+CP が最小となるのは, 点PがABC の対称軸上にある ときであることがわかっている。 [2] ABCの最大の角が120°より大きい場合 △ABCの最大の角をはさむ2辺で3点を結ぶ 4 一般に, 3点A,B,Cを線分で結んでつなげるとき, その線分の長さ の総和が最小となるのは,次のように結んだときであることが知られて いる。 [1] ABC の最大の角が120° より小さい場合 [1] △ABCの内部に点Pをとり, 点Pから3点を 結ぶ B・ [2] B C A C 5 10 15 次に、他の4つの都市の位置を地図上で確認したところ, 正方形の 点上にあった。 ある生徒は, この4つの都市を右のように対角 Ar 線状につなげれば, ケーブルの長さの総和が最小 になると考えた。 点Pは対角線の交点である。 課題 4 R 前ページのことを利用すると、 正方形の内部 A に2点Q, R をとり、 右の図のようにして4 つの都市を結んだ方が, ケーブルの長さの総 和が短くなる場合があることがわかる。 その理由を考えてみよう。 B Q 課題学習 P R D 課題4のように正方形の内部に 2点 Q, R をとるとき, AQ+BQ+QR+CR+DR が最小となるときのつなげ方が, ケーブルの 長さの総和を最小にして、 正方形の頂点上にある4つの都市をつなげる 方法である。 2点 Q, R をどの位置にとればよいか, 座標平面を利用して考えてみ よう。 まとめの課題2 4点A(-1, 1), B(-1, -1), C(1, 1), D (11) がある。 実数 αが 0<a≦1の範囲にあるとき, 2点Q(-α,0), R (α, 0) を考える。このとき 20 5本の線分の長さの和 AQ+BQ+QR+CR+DR が最小となるようなaの植 を微分法を利用して求めてみよう。 *

回答募集中 回答数: 0
数学 高校生

なんでlimを求めてるのかわからないです。あと、どういう時に求めればいいのかも教えて欲しいです。

基礎問 150 82 媒介変数で表された関数のグラフ 第5章 微分法 ay平面上で媒介変数日を用いて れる曲線C上の点Pにおける接線がx軸の正方向と (1) Cのグラフをかけ. (1) 00<2πのとき, dr dy -=1-cos0, de do 64で求めたdr (2) 直線とx軸の正方向とのなす角をaとすると(ただし, の直線の傾きは tanα で表せます. (数学ⅡI・B58) lim 0+0 dx (1) 媒介変数で表された関数の微分については 64 で学びました。 ここでは,それを用いてグラフをかく練習をしましょう。最大の ヤマは増減表のかき方です。 解答の中では,スペースの関係上、 をそのまま (途中を省略して)使ってあります。 また, dr よって, グラフは上に凸. dy また,dx -=0 より dy=lim lim dy 0-2-0 dx = sino より 1 (1-cos0)² =lim 解答 1-cos0>0 だから, 増減は右表のよう になる.また, 0+0 1-cos²0 -<0 sin0(1+cos0 ) x=0-sin0 y=1-cos 0 (2) 点Pの座標を求めよ。 0 1+cost_ 0 -=lim sin(2n+t) -0 1-cos (27+t) dy sino dx sin0=0 ∴.0=π (0<<2π より ) -= +00 1-cos 0 0 to sino 0-2=t とおくと, 02-0のとき, t→ - 0 IC (0≤0≤2π) ** 昔の角をなすとき、 dy dx y 20 0 0 -<-<4) + 2そ 注参照 [64 π 150 (5) π + 0 2 :: ... 270 π 6 =lim Sint dy_ do dx dx do だから (0,0), (2π, 0) において曲線Cは それぞれ直線 = 0, π=2πに接する。 以上のことより, グラフは右図 90 と2のときをはずして微分しているのは、この2つの [注] 対して, dx -=0 となるからです。 do dy <0+ --o-cost よって, 演習問題 82 t to sint =lim dy lim 0+0 dx¹ (2)0<6<2πにおいて ポイント その影響で, 00 と2のときのグラフの様子がわからないので, dy lim を調べてあるというわけです。 0-2-0 dx sino π = tan 7 1- cos 0 6 √√3 sin 0+cos0=12sin 1+cost t dx は -≠0 のときに使うことができる式です。 do π 13л -< 6 6 P(21 12 3/4 より ot=5 π5 0+ 6 √3 3 2' 2 2. 傾きは tan √3 sin0=1-cos A 2 sin(8+4)=1 ある直線がx軸の正方向とαの角をなすとき (一匹<a<△)で表せる 151 xy平面上で媒介変数tを用いて, x=√3-1 y=t³-t (−1 <t<1) で 表される曲線上の点P(x,y) における接線の傾きが0になるとき, 点Pの座標を求めよ. 第5章

回答募集中 回答数: 0