学年

質問の種類

数学 高校生

正直、全然わからないです!どうか詳しく教えてください!

T 基 本 例題 75 座標を利用した証明 (2),垂心 基本 73 座標平面上の3点O(0, 0), A(2,5),B(6, 0) を頂点とする △OAB の各頂 点から対辺に下ろした3つの垂線は1点で交わることを証明せよ。 CH CHARTO SOLUTION 3直線が1点で交わることを証明するには, 2直線の交点が第3の直線上にある ことを示すのが一般的 (p.121 基本例題 76(2)) であるが,本問では, △OAB の頂 点Aから対辺に下ろした垂線が直線x=2となるから, 頂点 0, B から対辺に下 ろした垂線と直線x=2 の交点をそれぞれ求め、それらが一致することを示せば よい。 ......!! 解答 0-5 5 直線AB の傾きは yA 6-2 4 5 よって、頂点Oから対辺ABに下ろ した垂線 OC の方程式は y= (1) ◆垂直⇔傾きの積が1 Q HE B 直線OCの傾きをと 5 とす 0 2 6 x また、直線OA の傾きは A HLA)SAT 2 すると2-1-) よって, 頂点Bから対辺 OAに下ろした垂線 BD の方程式は 4 よって m= 12 5 y0=-- (x-6) すなわちy=-2. :+ 2 5 5 頂点Aから対辺 OBに下ろした垂線 AE の方程式は (2) x = 2 ...... ③ ①① に x=2を代入すると 8 •2= 5 ①と③の交点のy座標 ②にx=2を代入すると -12/2-2 + 1/²2 - 03/0 8 y=- 5 5 5 ②と③の交点のy座標 ゆえに,3直線①,②,③は1点 (2, 2 ) で交わる。 したがって, △OAB の各頂点から対辺に下ろした3つの垂線 は1点で交わる。 inf. 一般に,三角形の 15 つの頂点から,それぞれ 対辺に下ろした垂線は1点 で交わる。この交点を,そ の三角形の垂心という。 3x+y+3=0 PRACTICE・・・・ 75 ② xy平面上に3点A(2,-2), B(57),C(6, 0) がある。△ABC 線は1点で交わることを証明 120 D C

回答募集中 回答数: 0
数学 高校生

線を引いているところで、なぜその式を使うのか疑問です。教えてください🙇‍♀️

Check |x-mx+ pm-9 例題 113 2直線の交点の軌跡2 (お(熊本大) m の2本の接線が直交するような点Pの軌跡を求めよ。 これは y=の接続なので,2式からyを消去した2次方程式の判別なる る。mの2次方程式を導き出したら解と係数の関係を利用する。 点Pの座標を(b, q) とおく. D=V と 解答 x-mx- pm+qよい ので、ポーnx+ pm-q=0の判別式を D.とすると, D=0 となる。 よって, のの解mが接線の傾きとなるので,①は異なる2つのor 実数解m,ma をもち,かつ,m;m2=-1 の関係にある。 異なる2つの実数解 m,, m2 をもつための条件は,①の 判別式を Da とすると,D:>0 である。 D2 1 のつおに D,=m'-4pm+4q=0 垂直条件:mm'=ー) 又 mm くが-q>0 より, ゲ=(2カ)?-4q>0 より, がーg>0 のまた,①において, 解と係数の関係より, mm2=-1 であるから, 上円 09くがを満たす範 m,m2=4q 94 4q=-1 0円販O o 0 半 。 異お3丁点コ 1 したがって, =ー …3 4 2, 3より, が+>0, q=- phtゴt -=b 4 おう0090ー が+ー>0はすべての実数かに ー同お 0 ついて成り立つ. よって,点Pの軌跡は,-M0\ の2つの解をa, Bと 画直線 vーー 解と係数の関係 |ax+ bx+c=0 (a+0 すると, 0」 b α+B=-- a8=! a x 同係で点Qを点Rに対応 が内に変換されるな 1 4

回答募集中 回答数: 0
数学 高校生

青チャート数IIBです。 (3)のかいせつがわかりません。もう少しわかりやすく教えていただきたいです。

(3) 直線 PQと直線 RS は交わり, その交点をTとするとき, OT をa, b, cで 四面体 OABC の辺 OA の中点を P, 辺 BC を2:1に内分する点をQ, 辺OCを OO000 2直線の交点の位置ベクトル 478 基本 例題63 |1:3に内分する点をR,辺 ABを1:6に内分する点をSとする。OR。 OB=6, OC=èとするとき (1) PQをà, 5, こで表せ。 O直線 PQと直線RS は交わり,その交点をTとするとき, ōTを, 表せ。 (2) R$ をa, b,cで表せ。 【類岩手大) 基本24 指針> (1), (2) PQ=0Q-OF, R$=OS-OR (差による分割) (3) 平面の場合(p.418 基本例題 24)と同様に, 5 0 00 交点の位置ベクトル 2通りに表し係数比較Jでの に沿って考える。点Tは直線 PQ, RS上にあるから, PT=uPQ (u は実数) RT=R$ (bは実数)として, OTをa, b, c で2通りに表し, 係数を比較する 解答 ュー-+る -a+6-0 1·+2c (1) PQ=00-OFー 2+1 aニー R 64+1·5 1: 3、 P。 (2) R$=OS-OR- さ。 H0×A0=3 D 1+6 4 (3) 直線 PQ と直線 RS の交点を T とする。 Tは直線 PQ上にあるから よって,(1) から A PT=uPQ(uは実数)つ iS B of-OF+uPG--(1-wā+u5+=u 0 2 -uc 3 Tは直線 RS 上にあるから ゆえに,(2) から RT=»R$ (vは実数)つ|1-)- oT-OR+ RS-Si++}(1-の) 6 「7 24点0, A, B,Cは同じ平面上にないから, ①, ②より AHA 2 4 の断りは重要。 1 3° 日2A17,AA0- (17 U= 3 4 第1式と第2式から 7 V=- U= これは第3式を満たす。 15 お期 日 よって, ①から OT=- IPO 6+ 2 15 15 6 1-2

回答募集中 回答数: 0
数学 中学生

続きです お願いしますm(_ _)m

昨年より生徒が12人増えた。今年の男子と女子の新入生をそれぞれ求めなさい。 70%,女子が女子全体の65%で,あわせて406人であった。この学校の男子と女子はそれぞれ何人 (3) ある中学校の新入生は,昨年が300人であった。今年は男子が5%減り,女子が10%増えた結果。 (1) 7%の食塩水と12%の食塩水を混ぜて、10%の食塩水を750gつくりたい。7%の食塩水と12%の食 得点 定期テスト直前模擬演習② フィードバック →単元18~単元21へ 連立方程式の利用 100点 次の問いに答えなさい。 【各完答,各8点×3] れぞれ何gずつ混ぜればよいですか。 (定期テストに向けて練習しよう! [各9点×2] 練習の問題 次の問いに答えなさい。 (1) 2つの自然数がある。 2つの数の和は53になり, 大きい方の数を3倍した数と小さい方の数をつ。 した数の和は136になるという。これらの2つの自然数を求めなさい。 7%( g) 12%( ずついますか。 nE ( と 男子( 人)女子( (2) 2けたの自然数があり. 十の位の数と一の位の数の和は16になる。また,十の位の数とーの位の私 を入れかえて出来た数は、もとの数より 18大きくなるという。もとの2けたの自然数を求めなさい。 人) 男子( 人)女子( 人) 5 次の問いに答えなさい。 人町から10km離れたB町に行くのに, P地点までは時速4kmで歩き、 P地点からは時速8kmで歩 たところ,全体で2時間かかった。A町からP地点までと,P地点からB町までの道のりをそれぞ [各完答,各8点× 3] 【各完答,各9点×2] |2 次の問いに答えなさい。 (1) 251人の生徒を5人の班と8人の班に分けると,斑班が37班できた。このとき, 5人の班と8人の班 はそれぞれ何班すずつできましたか。 れ求めなさい。 A町からP地点( km) P地点からB町( km) 10) 家から840m離れた病院に歩いていこうとしたが、体調が悪くなってしまい途中のP地点から歩く 速度がおそくなってしまった結果,全部で20分かかった。家からP地点までと、P地点から病院まで 歩いた時間はそれぞれ何分ずつでしたか。ただし、 P地点までは分速50m, P地点からは分速30mで 歩いたとする。 班)8人の班( 班) 5人の班( (2) 生徒の数が354人の学校の全校集会で, 生徒を4人がけの長いすと7人がけの長いすに分けて座ら せたところ,長いすは全部で63脚使った。このとき, 4人がけの長いすと7人がけの長いすはそれぞ れ何脚ずつ使いましたか。 家からP地点( 分)P地点から病院 ( 分) (3) 学校から公園を通って友人の家まで行くのに、学校から公園までは時速4.2km, 公園からは時連 6kmで行ったところ,学校を出発してから30分で友人の家に到着した。学校から友人の家までの道 のりを2640mとすると,学校から公園までと公園から友人の家まで行くのにかかった時間はそれぞ れ何分ですか。 4人がけの長いす ( 脚) 7人がけの長いす ( 脚) 3 次の問いに答えなさい。 [各完答,各8点× 2] (1) ある水族館の入館料は, 大人5人と子供6人で13000円, 大人2人と子供3人で5500円であった。 大人1人と子供1人の入館料はそれぞれいくらですか。 学校から公園( 分)公園から友人の家( 分) この単元の評価 大人( 円)子供( 円) (2) あるケーキ屋では, ショートケーキ4個とプリン8個で3600円, ショートケーキ7個とプリン5個 で4500円であった。ショートケーキ1個とプリン1個の値段はそれぞれいくらですか。 100点。 990。 9-40。 60点 39点、 975。 14点。 く アル ショートケーキ( 円) プリン( メダル メダル なメダル 円) 80 連立方程式

回答募集中 回答数: 0