学年

質問の種類

数学 高校生

数学cについてです (3)番です 見にくいですが、解説の下線部までは求められたのですが、直線AB の式がどこから来たのかがわかりません どのように求めるのでしょうか

図のように ry 平面上に点A(a, 0) B(0, 6) をとり, 線分ABを T1-t:tの比に内分する点をPとする. ただし, a≧0,6≧0,0<<1 であり線分ABの長さは常に1とする. (1) 点Pの座標およびy座標をα と tで表せ (2)点A0≦a≦1の範囲で動くとき,点Pはどのような曲線上を動くか. (3)(2)で求めた曲線上の点P における接線が,直線ABに一致するとき, との関係を求めよ.また,この関係を満たしながらt が 0<t<1の範囲 で動くとき, 接点はどのような曲線上を動くか. 2 b B3 O 2 P 1-t (3) a X (名古屋市立大薬一中 / 後半省略) アステロイドの性質 アステロイド (x3+y3=1; 媒介変数表示はx=cos 0, y=sin30) は, 長さ 1の線分がx軸,y軸上に両端点がある状態で動くときに通過する領域の境界にあらわれる. 例題を解 くと,(2)が楕円,(3)後半の曲線がアステロイドになり,両者は接する(接点は(3) 前半で求めたも の傍注の図参照). 演習問題も同じ図になるが, ABの通過領域を求める計算をやってみよう. 12 1-02= y 解答圜 (1)AB=1より6=√1-a2 であるから,P(ta, (1-t)/1-a²) YA (BB (2)=ta, y=(1-t) 1-α からαを消去すると, (0-1)+( P 2 y² 2 + -=1 0-2- 1-t t² (1-t)2 1-t 抹香 y2 (3)楕円 + +2 (1-t)2 =1上のP(ta, (1-t) √1-α2) における接線は, t 1-t -S) 1- ta (1-t)√1-a2 a y = 1 すなわち -x+ (1-t)2 t √1-a2 1-t -y=1である. 楕円の接線の公式. I 一方, 直線AB は y + =1だから, 両者が一致するとき, (+) a √1-a2 AO a 1 1-a2 -=- かつ : a=√t ta 1-t √1-a2 a=√f のとき,P(x,y)=(t√t, (1-t)√1-t) となるから, 3 3 x=tz,y=(1-t) 2 23 を消して,y=(1-x)2 2 2 ∴. x3+y=1 (+)+s ←第2式からは1-4²=1-t ■(2)と(3) を重ねて描くと YA 1 2 -SD-S 1-t 2 -x³+y³= 3=1 P(+², (1-+)²) A 4 演題 (解答は p.90) 0 t 1 IC

未解決 回答数: 0
数学 高校生

数Ⅰの二次関数の問題です。 x=-1,1で場合分けする理由を教えてください。 [2]に含めてもよいと考えてしまいました。 よろしくお願いします。

重要 例題 130 2次方程式の解と数の大小 (3) 000 方程式x+ (2-a)x+4-2a=0が1<x<1の範囲に少なくとも1つの をもつような定数αの値の範囲を求めよ。 基本 指針 条件が「-1<x<1の範囲に少なくとも1つの実数解をもつ」であることに 大きく分けて次のA, B の2つの場合がある。 A-1<x<1の範囲に, 2つの解をもつ (重解は2つと考える) ® -1 <x<1の範囲に, ただ1つの解をもつ A [1] 方程式の2つの解をα, B(α≦β) として, それぞれの場合につ + a いて条件を満たすグラフをかくと図のようになる。 ®は以下の4つの場合がありうるので注意する。 ® [2] ® [3] -1<x の範囲に B [4] a + B x は -1<x<1 の範囲に1つ、 <-1 または 1<x の範囲に1つ + x & x-x-2=0 (x-21 (x + 1) = 0 α=-1 A B= + -1 a -1 B1x x=-1と-1<x<1 の範囲に1つ f(x)=x2+(2-α)x+4-2aとし, 2次方程式f(x)=0の 解答 判別式をDとする y=f(x) のグラフは下に凸の放物線で,その軸は直線 a-2 x= である。 2 [1] 2つの解がともに-1<x<1の範囲にあるための条 件は, y=f(x) のグラフがx軸の-1<x<1の部分と異 なる2点で交わる, または接することである。 すなわち、次の (i)(iv) が同時に成り立つことである。 (1) D≥0 (Ⅱ) 軸が-1<x<1の範囲にある (iii) f(-1)>0 (iv) f(1)>0 (i) D-(2-a)2-4.1.(4-2a) =d+4a-12=(a+6)(a-2) D≧0から (a+6)(a-2)≥0 a≤-6, 2≤a ゆえに a-2 (ii) x= について 2 よって -2<a-2<2 ****** ① -1<a-2 <1 1 の範囲 2-a x=- 2-1 条件は 「少なくとも1 であるから, グラフがx軸 場合,すなわ この場合も含まれ [1] 軸 D=0 ゆえに 0<a<4 2 (i) f(-1)=-α+3であるから よって a<3 3. -a+3>0 +

未解決 回答数: 1
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0