学年

質問の種類

数学 高校生

(2)の場合分けの3<=x<5でイコールがつくのは何故か教えてください🙏

00 例題 基本の 158 三角形の成立条件、鈍角三角形となるための条件 [AB=2,BC=x, CA =3である △ABC がある。 1xのとりうる値の範囲を求めよ。 (2) ABC が鈍角三角形であるとき, xの値の範囲を求めよ。 (1) 000 [類 関東学院大 ] P.248 基本事項 3.4 重要 159 \ 三角形の成立条件|b-c| <a<b+c を利用する。 ここでは, 13-2|<x<3+2の形で使うと計算が簡単になる。 角となる場合を考えればよい (三角形の辺と角の大小関係より、最大の辺を考える (2) 鈍角三角形において,最大の角以外の角はすべて鋭角であるから,最大の角が鈍 ことになる)。 そこで、最大辺の長さが3かxかで場合分けをする。 例えばCA(=3) が最大辺とすると となりが導かれる。これに6=3,c=2, a=x を代入して,xの2次不 259 Bが鈍角 COSB<O⇔ c²+a²-b² 2ca <0 c²+a²-b²<0 等式が得られる。 4 B (1)三角形の成立条件から 3-2<x<3+2 <|x-3|<2<x+3または 1 1 <x< 5 よって どの辺が最大辺になるかで場合分けをして考える。 [1] 1 <x<3のとき,最大辺の長さは3であるから,そ の対角が90°より大きいとき鈍角三角形になる。 32>22+x2 x2-5<0 |2-x|<3<2+xを解い てxの値の範囲を求め てもよいが、面倒。 (1)から 1<x [1] 最大辺がCA=3 3 る。 ゆえに すなわち よって (x+√5)(x-√5) <0 ゆえに -√5<x<√5 C B>90⇔AC> AB+BC C 1<x<3との共通範囲は 1<x<√5 で [2] 3≦x<5のとき, 最大辺の長さはxであるから,そ (1) から x<5 の対角が90° より大きいとき鈍角三角形になる。 [2] 最大辺がBC=x x2>22+32 2. 3 C すなわち x²-130 よって ゆえに (x+√13)(x-√13)>0 x<-√13√13 <x B X A>90BC2>AB²+AC² 3≦x<5 との共通範囲は 13 <x<5 [1], [2] を合わせて 1<x<√5/13 <x<5 鋭角三角形である条件を求める際にも、最大の角に着目 し、最大の角が鋭角となる場合を考えればよい。 |AB=x, BC=x-3, CA=x+3である △ABC がある。 のとりうる値の範囲を求めよ。 (2) ABC が鋭角三角形であるとき、xの値の範囲を求めよ。 [類 久留米大] p.263 EX113

解決済み 回答数: 1
数学 中学生

(3)の解き方教えてください!! 答えはA、B、D、E と C、D、E、F でした

5 図1のように, AB AC の鋭角三角形ABCがある。 図 1 次の(1)~(4) に答えよ。 B (1) 図1において, 点Aから辺BCへの 垂線を作図する。 図2は, 点Aを中心と して, △ABCと4点で交わるように 円をかき, その交点を,あ、い, うえと したものである。 C 図2 A 図2のあ〜えの点の中からどれか2点を P,Qとすることで,次の手順によって, 点Aから辺BCへの垂線を作図することが できる。 あ B い 手順 え C ① 点P,Qをそれぞれ中心として, 互いに交わるように等しい半径の円をかく。 2 ① でかいた2つの円の交点の1つをRとする。 ただし, 点Rは点Aとは 異なる点とする。 3 直線ARをひく。 このとき、点P,Qとする2点を、 図2のあ〜えから2つ選び, 記号をかけ。 また,手順によって, 点Aから辺BCへの垂線を作図することができるのは, 点Aと点P, 点Pと点R, 点Rと点Q, 点Qと点Aをそれぞれ結んでできる図形が, ある性質をもつ図形だからである。 その図形を次のア~エから1つ選び, 記号をかけ。 ア 直線ARを対称の軸とする線対称な図形 イ∠BACの二等分線を対称の軸とする線対称な図形 ウ点Aを対称の中心とする点対称な図形 エ点Rを対称の中心とする点対称な図形

回答募集中 回答数: 0
数学 高校生

数1です!! cosAとtanAの値が反対になってしまったのですが原因がわかりません。 どなたか教えてください🙇‍♀️

例題107 (0-“087). Aは鋭角とする.sinA=1/12 のとき, cos A, tan A の値を求めよ. 考え方 sin' A +cos²A=1, を利用する. その際に,Aが鋭角であることに注意する. sin' A+cos'A=1 より, 解答 Focus 三角比の相互関係(1) 練習 [107] * (13) したがって cos2A=1-| Aは鋭角だから, よって, + cos²A = 1 また, tan A = tan A = tan A = Sin A COS A' cos A=√9 sin A COS A 3 -1-(1)-8 COS A>0 8 1.2√2 ÷ 3 = よって, (1) 800] より 2√2 3 1 3 3 2√2 cos A=- tan A= 1+tan² A: 1 2√2 (別解) Aが鋭角, sinA=1/23より"0" 右の図のような直角三角形ABC がかける. 三平方の定理より, = 1 √√2 1 三角比の定義 性質 217 2√2 4 1200== sin A, cos A, tan A のどれか1つの値がわかれば, 他の2つの値もわかる "OS.nie: AC=√AB²-BC=√32-12=√8=2√2 2√2 3 COS2 A 注〉 問題の情報から, 三角比の定義をもとに直角三角形をかくことができる. この三角形を利用して例題107 は解くこともできる. Aが鋭角のとき、次の値を求めよ. (1) cosA=1/3 のとき, sin A, tan A √2-18-192 4 **** Aが鋭角 (0°<A <90°) のとき、 sinA>0 cos A >0 081 tan A>0 3 Cos-0e)nie="0 2√2 2008-200= 3 (5² 081) 200="0ff 200 tan A = -Baie-200- sin A COS A 1 3 2√2 B 180 000 1

解決済み 回答数: 2