学年

質問の種類

数学 高校生

2.1 解き方ってこれでも問題ないですよね??

作り の符号で特 を考える とみ を図示 -26 28 2を買 同じ、 2倍 解答 内の 点 (1) AB+EC+FD-(EB+FC+AD) =AB+EC+FD-EB-FC-AD =(AB+BE)+(EC+CF)+(FD+DA) =AE+EF+FA=AF+FA kit. 基本例題2 ベクトルの等式の証明, ベクトルの演算 (1) 次の等式が成り立つことを証明せよ。 AB+EC+FD=EB+FC+AD 3倍 指針 (1) ベクトルの等式の証明は、通常の等式の証明と同 じ要領で行う。 ここでは, (左辺) - (右辺) を変形し て=0 となることを示す。 (2) (ア) x=2a-36-c, y=-4a+56-3C のとき, ya, b,こで表せ。 (イ) 4-3a=x+66 を満たすxをaで表せ。 (3x+y=d, 5x+2y=を満たす,をもで表せ。 を利用するこ 合成 P□+□=PQ, P=PQ ベクトルの計算では,右の変形がポイントとなる。 分割PQ=P+ℓ, (2) ベクトルの加法,減法,実数倍については,数式PQ=Q-□P と同じような計算法則が成り立つ。 向き変え PQ=-QP PP=0・・・ 同じ文字が並ぶと (ア) x=2a-36-c, y=-4a+56-3cのとき, の安心 x-yをa,b,c で表す要領で。 (イ) 方程式 4x-3a=x+66 (ウ) 連立方程式 3x+y=a, 5x+2y=b を解く要領で。 =AA=0 ゆえに AB+EC+FD=EB+FC+AD (2) (7) x−y=(2a-36−č) − (−4ã+5b−3c) =2a-36-c+4a-5b+3c =6a-8b+2c (イ) 4x3x+65から 4x-x=3a+65 よって ゆえに 3x=3a+66 x=a+2b Bi (1) 3x+y=a.. ① x2-② から これを①に代入して 6a-3b+y=a よって 1, 5x+2y=6 =2ab y=-5d+36 00000 ② とする。 CA 384 基本事項 ②③ ... CIDE 左辺(右辺) Sa+da+ sa 向き変えEB=BE など。 合成AB+BE = AÉ など。 検討 A□+□△+△A=0 (しりとりで戻れば ① ) この変形も役立つ。 ただし, それぞれ同じ点。 なお,00と書き間違えな いように。 両辺を3で割る。 6x+2y=2a 1-) 5x+2y=6 x =2a-b 387 1章 ベクトルの演算

回答募集中 回答数: 0
数学 高校生

26.1 この記述でも問題ないですよね??

0 00 基本例題26 不等式の証明 [A-B>0 の利用など] ①①①①① 次のことを証明せよ。 (1) a>b>0,c>d>0のとき ! (2) a>b>0のとき LUND a > 1,6>2のとき (3) 指針 解答 (1) a>b,c>0から c>d, b>0から したがって 別解a> b,c> 0 から ac>bc したがって ac-bdbc-bd=b(c-d) [] b>0であり,c>dよりc-d>0であるから b(c-d)>0 ac-bd>0 すなわち ac>bd (2) (左辺) (右辺) の式で通分する。 (3) (左辺) (右辺) の式で因数分解する。 【CHART 大小比較は差を作る よって 不等式 A>B を証明するには, A-B>0であることを示す。あること A>B 20 ↓ 差 A-B>0 ac>bc bc> bd ac>bd a b a(1+b)−b(1+a) 1+a 1+6 (1+a)(1+b) = したがって ac>bd a-b (1+a)(1+6) a 1+a a 1+a b 1+6 (zd+xp a-b (2) (1+a)(1+b) a>b>0より, a-b> 0, 1+α> 0, 1+b>0であるから >O ab+2>2a+b bob 1+6 = A≤³y0[+xa (1) 0=8-40=y6-1 (-vE) (r0ItxDx) -²₂01+xx0-³x= したがって (3) ab+2-(2a+b)=a(b-2)-(6-2)=(a-1)(b-2) a> 1,6>2より,α-1> 0, 6-2>0であるから (a-1)(b-2)>0 ab+2>2a+b p.47 基本事項 ① (40+8+ -20)=²xEXE=E (1) 差をとるよりも, 大小 係の基本性質を利用した が示しやすい。 ARS <A> B,B>C⇒A>C kde th HROUVIER この説明を忘れずに。 (左辺) (右辺) > 0 立剣低 木の方 (+) (+) (+) ① (zotud +20) ≤('s+|+x)(²+8+) @ αに着目して整理する。 00 この説明を忘れずに。 左辺) (右辺) > 0

回答募集中 回答数: 0