学年

質問の種類

数学 高校生

55.2 値の知れないQ(x)を消したいからx^2-1=0としたいけどx=iと置いていいのか躊躇しました。求めるxが整数、自然数、有理数とか書いてなければx=iとおいてもいいのでしょうか?

-3x+71 求めよ。 る。......... -1)(x-2) りを考える。 った余りは、 弐または定数 て 1,2 b,cの値 りを見つける 1式)から ■ち b=3 ここの練習5 効である。 を ったときの すると, (-2)(x) 2) +R(x)) a)+R( 代入。 5であ 38 ► 重要 例題 55 高次式を割ったときの余り (1 x"-1 を (x-1)²で割ったときの余りを求 2以上の自然数とするとき, めよ。 (23x100+ 2x7 +1 を x2 +1 で割ったときの余りを求めよ。 指針 実際に割り算して余りを求めるのは非現実的である。 p.88~90 でも学習したように, ① 割り算の問題 等式 A=BQ+R の利用 R の次数に注意, B=0 を考える がポイント。 (12) ともに割る式は2次式であるから、余りは ax+b とおける。 (1) 割り算の等式を書いてx=1 を代入することは思いつくが, それだけでは足りない。 そこで、 次の恒等式を利用する。 ただし, nは2以上の自然数, α=1, 6°=1 α-b²=(a-b)(a-1+α-26+α"362+..+ab^2+b^-1) |x-1=(x-1)'Q(x) +ax+b••••• ① (2)x+1=0の解はx=±i x=iを割り算の等式に代入して,複素数の相等条件 A, B が実数のとき A+Bi=0⇔A=0, B=0 を利用。 両辺にx=1 を代入すると ①に代入して x-1=(x-1)*Q(x+ax-a =(x-1){(x-1)Q(x)+α} 解答 (1) x-1 を (x-1)2で割ったときの商をQ(x), 余りをax+b 解 (1) 二項定理の利用。 とすると,次の等式が成り立つ。 x-1={(x-1)+1}"-1 0=a+b すなわち b=-a ここで, x-1=(x-1)(x"-1+x"-2+・・・・・・+1) であるから xn-1+xn-2+..+1=(x-1)Q(x)+α この式の両辺にx=1 を代入すると 1+1+ ······ +1=α a=n よって b=-αであるから ゆえに, 求める余りは nx-n (2) 3x100+2x+1 を x² +1 で割ったときの商をQ(x), 余りを ax+b (a,b は実数) とすると,次の等式が成り立つ。 3x100+2x+1=(x2+1)Q(x)+ax+b 00000 3・1+2i+1=ai+b 4+2i=b+ai n 両辺にx=i を代入すると 3i100+ 27 +1=ai+b i100= (i2)50=(−1)=1, "= (i²) i=(-1)*i=i であるから すなわち a,b は実数であるから したがって 求める余りは 2x+4 [学習院大 ] a=2, b=4 b=-n 基本 53.54 =Cn(x-1)^+..+n Cz(x-1)2 +mCl(x-1)+1-1 =(x-1)^{(x-1)^^2+..+°Cz} tron ゆえに, 余りはnx-n また, (x-α)の割り算は微 分法(第6章) を利用するのも 有効である (p.305 重要例題 194 など)。 微分法を学習す る時期になったら,ぜひ参照 してほしい。 x=-iは結果的に代入し なくてもよい。 実数係数の整式の割り算で あるから、余りの係数も当 然実数である。 練習 (1) n を2以上の自然数とするとき, x” を (x-2)で割ったときの余りを求めよ。 (p.94 EX39 55 (2) xlo+x+1 を x2 +4で割ったときの余りを求めよ。 91 2章 10 剰余の定理と因数定理

回答募集中 回答数: 0
数学 高校生

68. 表を書けばいいと思いつけばあとは簡単だと思うものの、表を書くことを閃く自信がないのですが高次不等式の問題は表を書いて解くのが一番いい方法ですか?

108 重要 例題 68 高次不等式の解法 次の不等式を解け。 ただし, α は正の定数とする。 x-(a+1)x2+(a−2)x+2a≦0 指針▷まず,不等式の左辺を因数分解する。 因数定理を利用してもよいが,この問題では、 次の文字αについて整理する方が早い。 (x-ar)(x-B)(x-x)≧0の形に変形したら、後は各因数x-α, x-px-yの符号を割 て, (x-a)(x-β) (x-y) の符号を判定する。 なお,α,ß, yに文字が含まれるときは,α, B, yの大小関係に注意する。・・・・・・ 解答 不等式の左辺をα について整理すると (x²-x²-2x)-(x²-x-2) a ≤0 x(x+1)(x-2)-(x+1)(x-2)a≦0 (x+1)(x-2)(x-a) ≤0 0<a<2のときx-lax2+ a=2のとき x≦-1, x=2 2 <a のとき x≤-1, 2≤x≤a よって [1] 0<a<2 右の表から, 解は x≦-1, a≦x≦2 [2] a=2のとき x-a 不等式は (x+1)(x-2)=0となり,x-2 (x-2)^2≧0であるから f(x) x-2=0 または x+1≧0 (20)+(1-8) (D-1)+(ーー) α<β<yのとき (x-a)(x-β)(x-x)≧0の解は (x-a)(x-β) (x-x) ≧0の解は x x+1 a≤x≤ß, r≤x xha, Baxy [1] f(x)=(x+1)(x-2)(x-a) x (01 検討 3 次不等式を3次関数のグラフで考える 3次関数y=f(x)のグラフについては,第6章の微分法のところで 詳しく学習するが、グラフの概形は右の図のようになる。 このグラフから 4x²-x²-2x x-2 x-a f(x) =x(x-x-2) =x(x+1)(x-2) ゆえに, 解は x≤-1, x=2(x+1+0+(1+6)S-A+brys [3] 2<αのとき 右の表から,解は x-1,2≦x≦a [1]~[3] から 求める解は - 0 0 0 00000 ... a ... 2 …. + + + + + 0 + ++ [3] f(x)=(x+1)(x-2)(x-a) ... -1... 20 - 0 + 0 - + H + 28. 11.03 - 0 + 0 + 22 +0|0 + + FIT - B 1 a + + 0+ 0 + 2

回答募集中 回答数: 0
世界史 高校生

空欄の部分ってなにが入りますか??

第Ⅱ部 国際秩序の変化や大衆化や大衆化と私たち 第6章 経済危機と第二次世界大戦 2 ファシズムの台頭 【ドイツの拡張政策】 ・ベルサイユ条約破棄→再軍備 ・民族自決を強く主張 1938年オーストリア 併合 チェコスロヴァキア →ミュンヘン会議開催 ・ドイツとの戦争回避が目的 ・ドイツ、イギリス、フランス、イタリアが参加 ・イギリスのチェンバレン →1939年独ソ不可侵条約締結 ・世界に衝撃が走る 明治 ドイツとソ連 ・ドイツの東進に不安を持つソ連 イギリス、フランスとの連携を主張するも CE 1868年~ ・1939年 ヒトラーがスロヴァキアを独立させ、実質支配 チェコを保護領化 チェコと分離させた 近代 大正 のドイツ人居住区スデーデン併合を強く主張 1912年~ スデーデで _首相によりドイツの要求を容認=宥和政策 1926年~ に招かれず→不信感 =チェコスロバキア消滅 チェコ ドイツ (6) ズデーテン併合が決定 →ドイツのものになった ベルリン O スロヴァキア 独立 ズデーテンランド ◎プラハ 現代 昭和 1945年~ オーストリア ワルシャワ O ポーランド チェコスロヴァキア 17 ブダペスト ハンガリー ドイツのゲルマニの人が住んでいる。 352 ドイツが領土を増やそうとしている

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 17:58 B マイページ 数学 高校生 たり 解決済みにした質問 POINT! 第6章 図形の性質 BQC 質問 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BC の交点をRとする。 このとき,BP=アである。 ここで,線分 BP は円Sの直径であり, I√√ ∠CBQ=イウであるから, CQ= である。 カ また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ るので, AQ=Y である。 よって, BQ= である。 ク サ SCLOE 次に,直線 RQ は円Sの接線であるから, ∠QBR=∠シ である。 よって, AQBRと シは相似である。シに当てはまるものを、次の⑩~③の うちから一つ選べ。 O APQ ス したがって, CR= QR である。 tz また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ るから, QR= ソタ チ である。 解答 AB=4√2, BC=CA=4より △ABCは タイムライン ② BRQ 公開ノート 107 線分の長さを求めるとき, 三角比の知識を利用することがある。 40% 4√2 ③ CQR ・三角形の外接円の半径(直径) 正弦定理 (21) - 2辺とその間の角から残り1辺を求める→余弦定理 (22) 進路選び all 35 ? Q&A 編集 7時間前 ( 第3章) 閉じる マイページ

回答募集中 回答数: 0
数学 高校生

「シ」が分かりません 緑チャートの問題です 解説お願いしますm(_ _)m

116 第6章 図形の性質 重要 例題25 平面図形と三角比 △ABCにおいて, AB=4√2, BC=CA=4 とする。 線分 AC を 1:3に内分す る点をPとし, 3点 B, C, P を通る円Sと線分ABの交点のうちBでない方を Q とする。 また,円Sの点Qにおける接線と直線BCの交点をRとする。 このとき, BP=アである。ここで 線分BP は円Sの直径であり, I√ である。 カ ∠CBQ=イウであるから, CQ= DN また, 直線 BQ と直線 CP が点Aで交わり, 4点 B, C, P, Q は同一円周上にあ □ケ√コ である。 よって, BQ= サ √キ である。 るので, AQ= ク 次に,直線 RQ は円Sの接線であるから,∠QBR=∠シ である。 よって, AQBRとシは相似である。シに当てはまるものを次の⑩~③の うちから一つ選べ。 O APQ @ BQC したがって, CR= QR である。 また, 直線 RQ は円Sの接線であり, B,Cは点 R を通る直線と円Sの交点であ 1 るから, QR= ソタ チ である。 1:1-30:08 POINT! DA 0A- ス セ ② BRQ 線分の長さを求めるとき, 三角比の知識を利用することがある。 解答 AB=4√2, BC=CA=4より, ABCは . 三角形の外接円の半径(直径) → 正弦定理 (21) ・2辺とその間の角から残り1辺を求める→余弦定理 ③ CQR 4√2 QA (第3章) 基22)

回答募集中 回答数: 0
数学 高校生

右側のステップ4のx=aを代入するとのところからわかりません

第6章 微分法と積分法 第3節 積分法 8-1 定積分の定義 定積分 ●定積分とは| ② グラフy=f(x)とx軸、y軸、y軸に平行な直線で囲まれた部分の 面積は、関数f(x)とどのような関係にあるか? f(x)=1 f(x)=x f(x)=x+1 f(x)=x² f(x)=x³ を求める計算! y=f(x), x軸で囲まれた 10~xの面積 横 C te² 1/2x2x 1/3x ² 3 ●積分と微分の関係 ? a≦x≦bの範囲でf(x)≧0のとき一簡単にするため y=f(x)、x軸、x=a、x=bで 囲まれた部分の面積Sを求めよう! step. 1 αからxまでの面積をS(x) とする。 S(th) O ol a y 2 求める面積を微分すると、 関数f(x)になる y=f(x)のグラフで囲まれた面積を計算するときは、 微分の逆をする x x 1x S(xXx) 積分する x+1 xh S(b)=S b S(2ch) step. 2 xからx+hの間で、f(x)の最大値をM (x,f(x)) 最小値をm とする y=f(x) step.3 aubの面積 右の図より、 mh≤S(x+h)-S(x) ≤Mh S(x+h)-S(x) -SM h h→0のとき ms. (f(x)] [5'(x)] よって step.4 境界線を横行すると面積この逆 両辺をxで不定積分すると、 $CON S(x)=f(x)dx=F(x)+C x=a を代入すると よって f(x) [S'(x)=f(x) 面積を微分すると. 境界線になる S(a)=F(a)+C 0=F(a)+C C=-F(a) S(x)=F(x)-F(a) 範囲a~b ※f(x)を積分して、それに を代入したものから (x) x を代入したものを 引いてね、という記号 S(x+h) -S(x) ※F(x) という数に x=0を代入したものから a x ↑ ●定積分の定義と記号 <定積分の定義> F'(x)=f(x)のとき f(x)dx=[F(x]=F(b)-F(a) を代入したものを 引いてね、という記号 x+h すなわち m W 9 x=bを代入すると x+h S(b)=F(b)-F(a) S=F(b)-F(a) [[例13] 面積Sは、こうやって 計算することができる! ※ただし、 20に限る 14 a x=aからx=bまで 関数f(x) をxで 定積分する、という

回答募集中 回答数: 0
数学 高校生

カッコ1の最後の式の(3-1)×4の理由がわかんないです

364 第6章 場合の数 例題206 三角形の個数(2) A1, A2, As, ..., A12 を頂点とする正十二角形が ある.この頂点のうち3点を選んで三角形を作るとき, 次の個数を求めよ. (1) 二等辺三角形 (2) 互いに合同でない三角形 考え方 (1) 二等辺三角形は、 右の図のように底辺の垂直二等 分線について対称になる. つまり, 頂角にくる点を固定して, 底角にくる点 のとり方を考えればよい. 解答 A1~A12 について同様に考えれば, 個数を求める ことができるが, 正三角形になる場合に注意する. (2) 頂点間の間隔に着目する. 右の図のように①と②は合同 で ①と③は合同でない. (1) A1 を頂角とする二等辺三角形は, 線分 A1A7 に関して対称な点の組 (A2, A12), (A3, A11), (A4, A10), (A5, A9), (A6, A8) の5通り よって, 60-(3-1)×4=52(個) (2) 1つの頂点をAとしてよい. 他の2頂点を Ai, Aj(i<j) とす るとき, 頂点は12個より, 5×12=60 (個) このうち, 正三角形となる4個の三角形は3回重複 して数えている. a A9 ! A5 A7 よって, 求める個数は, 12個 |z=5 x=i-1, y=j-i, z=13-j として, x+y+z=12 (1≦x≦y≦z) を満たす整数解の個数を求めればよい. この整数解を求めると, (x,y,z)=(1,1,10),(1,2, 9), (1,3,8), (1, 4, 7), (1, 5, 6), (2, 2, 8), (2, 3, 7), (2, 4, 6), (2, 5, 5), (3, 3, 6), (3, 4, 5), (4, 4, 4) A1 A8 x=3 y=4, A4 A₁ A12, A2 All A10 A9 A10 # A8 Ø *** A7 A₁ A6 A3 A4 A5 # A4 正三角形は他の頂点 から見ても二等辺三 角形なので,重複し て数えてしまう. 正三角形となるのは (A1, A5, A9), (A2,A6, A10), (A3, A7, A11), (A4,A8, A12) 1つの頂点を固定し て他の2つの頂点の とり方を考える. 辺の移動回数が小さ い順に考えていく. M AICACACA 回回回 D1≤x≤y≤z, |x+y+z=12

回答募集中 回答数: 0
数学 高校生

下部分の青でマークされている箇所が何故こうなるのか教えて頂きたいです!

■後 . (210) (x)=x+1の2つの質の和が2となるとき、kの依および2つの権 値を求めよ。 (x)=x+kx2+kx+1 より f'(x)=3x²+2kx+k 袋)が2つの悩をもつから、f(x)=0 は異なる2 つの実数解をもつ。 つまり、 f'(x)=0 の判別式をDとすると, D>0 である. 2=k-3k=k(k-3)>0 4 ......1 *), k<0, 3<k f(x)=0 つまり,3x2+2kx+k=0 の2つの解をα, B (α<B) とすると, 解と係数の関係より, B= k/² 3=-2/23k, af= a+B== 2つの極値の和f(a)+f(B) は, f(a) + f(B) = (a³+ka² +ka+1)+(B³+kß²+kß+1) =(a³+ß³)+k(a²+B²)+k(a+B) +2 =(a+B)³-3aß(a+B) +k{(a+B)²=2aß}+k(a+B) +2 大 +2 = /k³²-²3² k²+2 f(a)+f(B)=2より, 9 したがって,より,k=2127 9 このとき, f(x)=x+2x+ f'(x)=3x²+9x+ f'(x)=0 のとき, α<βより, a= f(x) の増減表は, 右のようになり x=α で極大値 x=β で極小値 をとる。 22/7 k³ - ²/3 k² +2=2 k²(2k-9)=0 x= 3x2+9x+ 2x2+6x+3=0 -3±√3 2 -3-√3 2 929-29-23 * -x+1 ・・・ -=0 B= Check! 練習 第6章 微分法 355 Step Up -3+√3 2 a xC f'(x) + 0 f(x) 大 ・・・ - B 0 極小 (B+x)=²x レース)(エース)(12つの極値の和が2 極大値と極小値をもつ 5305- 3 5 ここでf(x)=(2x+6.x+3)(1/2x+424) - 12/28/1/27 Xx 4 Q,Bは, 2x2+6x+3=0 の解だから, +== 2 c) (K) 20 SIS 10 AJ 0 6 f(x) を 2x2+6x+3で割る. 2a²+6a+3=0 22+6β+3=0 5 4+3√3 f(a)=-2a-5--3-3-√3- 4 4 4 (月)=-128-12--21-3+1/354-3/34/(8)=2(a)でもよい。 (B)-2 -B- 4

回答募集中 回答数: 0