学年

質問の種類

数学 高校生

なぜ、(2)と(3)は、極2分のπを通ると記述しなくてはいけないんですか?お願いします!

極方程式 ○dO00。 OOOO0 110 基本例題 67 直交座標の方程式 次の直交座標に関する方程式を,極方程式で表せ。 (1) x-V3y-2=0 (3) y=4x (2) x°+y°=-2x D.105 基本事項 CHART lOLUTION MOITUIO 直交座標の方程式 一 極方程式 =rcos0, y=rsin0, x'+y°=r x, yをr, 0を用いて表す。 また, 得られた極方程式が三角関数の加法定理など を用いることで,より簡単な方程式になるときは, そのように変形する。 (1)では途中で, r(acosθ+bsin0)=c の形の極方程式が得られる。このとき, 三角関数の合成を用いても簡単な形になるが, 加法定理 cos(α-B)=cos acosβ+sinasinβ を利用すると, rcos(0-α)=d の形とな り,表す図形がわかりやすい。 (2),(3)では r=0 が極を表すことに注意し, 他方に含まれていることを確認す 日A04 る。 解答 (1) x-V3y-2=0 に x=rcosθ, y=rsin0 を代入すると 合 rcos 0-/3rsin0-2 r(cos0-V3sin0)=2 0+A0rA Cosa G6D =0 /3 ゆえにcoso+sine-(-)-15grs よって、求める極方程式は(rcos(0-2)=1 2' 5 -π=1 3 rcos 0 3 2 (2) x°+y°=-2x に x°+y°=ア, x3rcos0 を代入すると r(r+2cos0)=0 r=0 または r=-2cos0 利用 合=-2rcos 0 ゆえに 甘る A代職 Tπ を通る。 J 極0の極座標は中 ア=0 は極を表し,r=-2cos 0 は極(0, 2 よって, 求める極方程式は 口(3) y=4x に x=rcos0, y=rsin0 を代入すると (0, 0) 0は任意の数。 r=-2cos0 r(rsin'0-4cos0)=0 DB(- *パ'sin'0=4rcos@ ゆえに r=0 または rsin'0=4cos 0 r=0 は極を表し, rsin'0=4cosθ は極(0, (π を通る。 2 よって, 求める極方程式は rsin'0=4cos 0 PRACTICE…67° 次の直交座標に関する方程式を, 極方程式で表せ。 (1) x+y+2=0 面 (2) (x°+y?-4y=0 来(3) x-y°=-

回答募集中 回答数: 0
数学 高校生

[3][4]は直角三角形ができない場合の場合分けだと思いますが、[1][2]の場合分けをする意味が分かりません 教えてください

147 基本 例題83 極方程式と軌跡 OO0 点Aの極座標を(10, 0), 極0と点Aを結ぶ線分を直径とする円Cの周上の任 意の点をQとする。点Qにおける円Cの接線に極0から垂線 OP を下ろし,点 Pの極座標を(r, 0) とするとき, その軌跡の極方程式を求めよ。ただし, 0S0<rとする。 【類岡山理科大] 基本81 指針>点P(r, 0) について, r, 0の関係式を導くために, 円Cの中心Cから直線 OPに垂線 CH を下ろし, OPと HP, OH の関係に注目する。… まず, 0<0<う2 T <0<πで場合分け をしてr, 0の関係式を求め,次に, 0=0, 2章 Tπ の各場合について吟味する。 2 11 CHART 軌跡軌跡上の動点(r, 0)の関係式を導く -08091 解答 円Cの中心をCとし, Cから直線 OP に垂線 CHを下ろすと 10= を境目として, Hが 2 線分 OP上にあるときと, 線分 OP の延長上にある ときに分かれる。 OP=r, HP==5 P [] 0<0<号のとき Q H OP=HP+OH 5 0 -5-C 直角三角形COH に注目。 OH=5cos0であるから r=5+5cos A X C [2] 号くの<れのとき 2 OP=HP-OH 直角三角形 COH に注目。 ここで OH=5cos(πー0)=15cos0 よって r=5+5cos0 [3] 0=0 のとき, PはAに一致し, OP=5+5cos0を満たす。* P. Y、 (*)[1], [2] で導かれた O C A HT-0 C X r=5+5cos0が0=0, 2 のときも成り立つかどうか をチェックする。 参考 r=5(1+cos0) で表さ [4] 0= のとき, OP=5で, T OP=5+5cosを満たす。*) れる曲線をカージオイド と 2 いう(p.151 も参照)。 以上から,求める軌跡の極方程式は r=5+5cos 0 練習 点Cを中心とする半径aの円Cの定直径を OA とする。 点Pは円C上の動点で, 83 点Pにおける接線に0から垂線 OQ を引き, OQの延長上に点Rをとって QR=aとする。 0を極, 始線をOA とする極座標上において, 点Rの極座標を (r, 0) (ただし, 0%0<z) とするとき 「大(1) 点R の軌跡の極方程式を求めよ。 (2) 直線 OR の点Rにおける垂線 RQ' は, 点Cを中心とする定円に接すること を示せ。 p.152 EX63 E極座標、極方程式

回答募集中 回答数: 0