学年

質問の種類

数学 高校生

239.1 解答の別解の方で解いたのですが、 解答でいう「①と③が一致するとき」という文言を 「①、②はxにおいて次数の等しい項の係数は等しいので」 と書いたのですが問題ないですか??

点 重要 例題239 2つの放物線とその共通接線の間の面積 2つの放物線C1:y=x2, C2:y=x2 - 8x +8 を考える。 (1) CとC2の両方に接する直線l の方程式を求めよ。 (2) 2つの放物線 C1, C2 と直線lで囲まれた図形の面積Sを求めよ。 xx-α) 二下関係は -4x+3 3x-33 指針 (1) 「Cに接する直線がC2 にも接する」と考える。まず, C 上の点(p,p2) における接線の方程式を求め,この直線が C2 に接する条件を,接線⇔重解を利用して求める。 (2) 面積を求めるときの定積分の計算には,前ページ同様 [(x—a)²dx= (x_a)³ -+C (C は積分定数) を使うとらく。 3 (1) 755 における接線の方程式は,y'=2xから 上の点(p,p2) y-p²=2p(x-p) b5 y=2px-p². ① この直線がC2 にも接するための条件は、 2次方程式 2px-p2=x2-8x+8 ゆえに xh (2) x=-1+4=3 Ci, C2 との接点のx座標は,それぞれ 7:01:49 2009 すなわち x-2(p+4)x+p2+8=0 が重解をもつことであり、②の判別式をDとするとD=0 WURD ここで D={-(p+4)}²-1• (p²+8)=8(p+1) p=-1 よって 8(p+1)=0 ① から、直線ℓ の方程式は y=-2x-1 (2)=1のとき2次方程式②の解は ...... =S_,(x+1)'dx+∫(x-3)"dx -3)³ 8 8 [(x + ¹)²] + [(x - 3²1 - 3 + 3 = 16 3 3 3 x=-1.3 C1とC2の交点のx座標は,x2=x2-8x+8から したがって求める面積は S=S_{x-(-2x-1)}dx+∫{x28x+8-(-2x-1)}dx x=1 \C₁ 1x=- 基本 236~238 2 別解 (1) C2上の点 (g, g2-8g+8) における 接線の方程式は y-(g²-8g+8)=(2g-8)(x-g) すなわち y=2(g-4)x-q2+8 ….. ③ ①と③が一致するとき 2p=2(q-4), -p²=-q²+8 これを解いて -1 000 p=-1, g=3 よって、直線l の方程式は y=-2x-1 -2(p+4) 2・1 AVCi 1 l から。 3 3 71 4 面 積

未解決 回答数: 1
数学 高校生

62.1 最後の文言ですが、 「点Hの座標は〜」と、"点"Hと書いても良いですよね??

76 1800000 基本例題 62 垂線の足, 2直線上の2点間の距離 (1)2点A(-3, -1, 1), B(-1, 0, 0) を通る直線lに点C(2,3,3) から下ろ NOTE OR した垂線の足Hの座標を求めよ。 (2) 2点A(-1,2,3), B(0, 1, 2) を通る直線をl とする。 点Pは直線l上を 動き,点Qはy軸上を動くものとする。このとき, 2点P, Q間の距離の最小 値と,そのときの2点P、Qの座標を求めよ。 [(1) 京都大 京都大 ***A3 ADA MA 指針点□は直線AB上⇔A□=kAB となる実数んがある。 (3), ! (1) AHAB(kは実数) からCHを成分で表し, ABICH を 利用する。 解答 8+b+8 図 (1) 点 H は直線 AB 上にあるから,AH=kAB となる実数k がある。 よって 注意点Cから直線lに下ろした垂線の足とは,下ろした垂線HA と直線l との交点のこと。 6-DA 8- (2) Q(0,1,0)として, AP=kAB から PQを成分で表す。点に関する CH=CA+AH _ (=CA+kAB O 3004 =(-5, -4,-2)+k(2,1,-1) =(2k-5, k-4, -k-2) ABCH より ABCH =0であるから (2)A(-1.2(2k-5)+(k-4)-(-k-2)=0 ) とする。 ゆえに k=2 このとき OH OC+CH C (3=(1, 1, -1) 56 + 6 + 8 (1,1,-1) の点であるから、AP=A したがって, Hの座標は (2)類 (2)類 九州大] 基本60 A DA CI staty DABAS -b+d=9A3% BO B OL-RUZA HORA TH ク 140 HOTA DAMAR T Fl H y •C x IMAJ 172337

未解決 回答数: 0