学年

質問の種類

数学 高校生

この問題でグラフを書くとなっているのですが 3次関数のグラフって書けますか?だいたいって感じですか? 微分してもうまくいかなくて💦 簡単なグラフだったらすみません、、

0000 広めよ。 めよ。 (2)東京電機大 245 246 重要 257 係系に注意 YA 2 151 BA 基本 251 3次曲線と接線の間の面積 「もの面積Sを求めよ。 393 00000 曲線y=x-5x2+2x+6とその曲線上の点(3, -6) における接線で囲まれた図 | 指針 面積を求める方針は 1 グラフをかく ・基本 248 250 重要 252 2 積分区間の決定 ③上下関係に注意 また、積分の計算においては,次のことを利用するとよい。 本間では,まず接線の方程式を求め, 3次曲線と接線の共有点のx座標を求める。 3次曲線y=f(x)(x3の係数がα) と直線y=g(x) がx=αで接するとき、等式 f(x)-g(x)=a(x-a)(x-β) が成り立つ。 y=3x²-10x+2であるから, 接線 の方程式は 解答 ERUT SU (-6)=(3・32-10・3+2)(x-3) 曲線 y=f(x) 上の点 (α, f(a)) における接線 の方程式は y-f(a) f'(a)(x-a) 0 すなわち y=-x-3 3 0 x 2 線の概形について _342 参照。 ここで 値を求める必要は この接線と曲線の共有点のx座標 は,x-5x2+2x+6=-x-3の解 である。 -6 これからx-5x2+3x+9=0(*) ゆえに (x-3)(x+1)=0 よって x=3,2-10 y=x-4xにつ =x(x+2)(x-2) 由との交点のx座 x=0, ±2 線 y=3x2 は原点 する, 下に凸の放 したがって図から,求める面積は S={(x-5x2+2x+6)-(-x-3)}dx =S(x-3)(x+1)dx 左辺が (x-3) を因数に もつことに注意して因数 分解。 1-5 3 93 3-6 -9 1 -2 -3 23 1 33 03 1 1 0 ( 7 7章 回新 =S,(x-3)"{(x-3)+4}dx=S{(x-3)"'+4(x-3)")dx(xa)(x-3) x- 4 13 313 -3) 3- +4 3 -1 -64+- == 256 64 3 = =(x-2)^{(x-2)-(B-α)} 3 f(x-a) dx= (x-a)*+1 n+1 +C m 積

解決済み 回答数: 1
数学 高校生

こういう問題で両辺を🟰でつなげて Xで割って判別式を用いるのはだめなんですか?

332 重要 例題 208 2曲線が接する条件 解答 00000 2曲線 y=x-2x+1とy=x2+2ax+1 が接するとき, 定数αの値を求めよ。 また、その接点における共通の接線の方程式を求めよ。 指針 「2曲線が接する」 とは, 2曲線が1点を共有し,かつ, 共有点 における接線が一致することである (この共有点を2曲線の接 点という)。 2曲線y=f(x),y=g(x)がx=pの点で接するための条件は 接点を共有する f(b)=g(b) 〔接線の傾きが一致する f(b)=g' (b) f(x)=x-2x+1,g(x)=x2+2ax+1 とすると f'(x)=3x2-2, g'(x) = 2x+2a 2曲線がx=pの点で接するための条件は 基本20420 △判別式は 使える EXE ② 130 曲線 つし の方 ③ 131 座 の 2次方程式 132 E Af(p)=g(p) よって ②から 2a=3p2-2p-2 f(p)=g(p), f'(p)=g'(p) p3-2p+1=p2+2ap+1 ① 32-2=2p+2a 2. (3) 条件 f'(p)=g'(p) 接点を共有する 接線の傾きがー これを①に代入して p3-2p+1=p²+(3p²-2p-2)p+1 致する条件 αを消去する。 ゆえに p²(2p-1)=0 よって p=0, 2 9 ③から =0のときa=-1,=123のとき a=- 8 133 曲線y=f(x) 上の点 x=pにおける接線の方程式は y-(p³-2p+1)=(3p²-2)(x-p) グラフは,次のようにな 0=(S-) る。 すなわち y=(3p2-2)x-2p³+1. ゆえに, 求める接線の方程式 は a=-1(p=0)のとき a=-1のとき +a=1のとき 134 yy=f(x) ya `y=f(x)/ (1- y=-2x+1 a=- 9 11/12 (11/12) のとき y=-2x+4 5 3 10/10 ty=g(x) 羽 (1) 2曲 0 1 3-4- x 0 18 1 1 12 y=gl 117 HIN 共通な

解決済み 回答数: 3