学年

質問の種類

数学 高校生

数Ⅱの微分法の問題です。(3)について右写真の赤線部で、接線の傾きがf'(0)、f(3a/2)になるのは、t²(2t-3a)=0を解いた結果から出てきてると思うのですが、なぜその結果をf'(x)に代入すると傾きが出てくるのかが分からないので教えて欲しいです。

基礎問 96 接線の本数 曲線 Cty=-x上の点をT(t, ピーt) とする. (1) 点Tにおける接線の方程式を求めよ。 (2)点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ、ただし,a>0, bキα-a とする. (3)(2)のとき、2本の接線が直交するようなα, bの値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ますだから、(1)の接線にA(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 95 注で学習済みです。 (3) 未知数が2つあるので,等式を2つ用意します. 1つは(2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです。接線の傾きは接点における微分係数 (34) ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります。 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3t2-1)(x-t) ∴.y=(3t2-1)x-2t 186 (2)(1)の接線はA(a, b) を通るので b=(3t2-1)a-2t3 ―は接点のx座標 が2つでてくるなら、(b)を通る2つの接線の .. 2t-3at2+a+b=0 ...... (*)接点がでてくるということ (*) が異なる2つの実数解をもつので, g(t)=2t-3at2+α+b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, y=x (極大値)×(極小値) = 0 であればよい. (t,t³-t) A(a,b) 95注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから

解決済み 回答数: 1
数学 高校生

aとxを入れ替えずにやるとf(x)の値が異なってしまいます(2枚目の写真です)。 なぜ入れ替えて計算しないといけないんですか?そのままやったら間違ってる理由も教えて欲しいです。

380 基本例題 242 定積分と微分法 次の等式を満たす関数 f(x) および定数a の値を求めよ。 00000 (1)f(t)dt=x²-3x-4 71(2) (2) f(t)dt=x³-3x p.374 基本事項 d dx |指針 a が定数のとき、Sf(t)dt はxの関数である。その導関数について,F(8)= とするとSoftata[F(t)]-1(F(x)-F(a))=F(x)=f(x) d dx 定数 F (a) は xで微分すると0 であるから,off(t)dt=f(x)が成り立つ。 Ja d また,等式でx=a とおくと, Sof(t) dt=0 であるから,左辺は0になる。これより αの方程式が得られる。 (2)まず,与えられた等式を。f(t)dt=-x+3x と変形して,両辺をxで微分。 CHART 定積分の扱い SS を含むならxで微分 (1)S*f(t)dt=x-3x-4……… ① とする。 解答 ①の両辺をxで微分すると cSf(t)dt=2x-3 あ すなわち f(x)=2x-3 Sof(t)dt=f(x) また, ① で x=α とおくと, 左辺は0になるから 0=α²-3a-4 Sof(t)dt=0 よって (a+1)(a-4)=0 a=-1,4 したがって f(x)=2x-3;a=-1, 4th()( (2) Sef(t) dt=x-3xから (1)しさん? X ◄S¢ƒ(t)dt=−S*ƒf(t)dit Ss(t)dt=-x+3x ② 上端と下端を交換しない d=jbで ②の両辺をxで微分するとSof(t)dt=3x2+3 すなわち f(x)=-3x2+3 また,②で x=αとおくと, 左辺は0になるから 0=-α+3a ゆえに a(a²-3)=0 よってa=0, ±√3 したがって f(x)=-3x2+3;a=0, ±√3 dca dx Saf (t)dt=-f(x) としてもよい。

解決済み 回答数: 1
数学 高校生

(2) →矢印の変形はどうしてするのでしょうか?? ∮aからxの形で使わなければならない???でもxからaだとダメな理由を教えてください。お願いします

380 基本 例 242 定積分と微分法 (1) SF(1)dt=x-3x-4 次の等式を満たす関数f(x) および定数aの値を求めよ。 (2) 1000 (t)dt-x-3x 指針 とすると であるから, off(t) dt=f(x)が成り立つ。 a が定数のとき,s (1) dt は xの関数である。 その導関数について,F( dx) (t)= [F(1) = x (F(x) F(a))=F(x)=(x) 0.374 dx また、等式で x=α とおくと, f(t) dt=0 であるから, 左辺は0になる。 これより αの方程式が得られる。 (2) まず,与えられた等式を f(t)dt=-x+3x と変形して, 両辺をxで微分 定数F (α) はxで微分すると、 CHART 定積分の扱い SS"を含むならxで微分 (1) Sof(t)dt=x-3x-4 ① とする。 解答 ①の両辺をxで微分すると dx Ja ds.f(t)dt=2x-3 すなわち f(x)=2x-3 また, ① で x=α とおくと, 左辺は0になるから 0=α²-3a-4 よって (a+1)(a-4)=0 したがって ゆえに a=-1,4 f(x)=2x-3;α=-1,4 (2) Sef(t) dt=x3xから df(t)dt=f(x) dx SSf(t)dt=0 Sof(t)dt=-x+3x ②の両辺をxで微分すると Ja すなわち f(x)=-3x2+3 上端と下端を交換した ② で axSof(t)dt=-3x2+3 また,② で x=α とおくと, 左辺は0になるから ゆえに したがって 0=-a³+3a a(a²-3)=0 よって a=0, ±√3 f(x)=-3x2+3;a=0, ±√3 df (t)dt=flt としてもよい

解決済み 回答数: 1