学年

質問の種類

物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
物理 高校生

(4)からの解説お願いします。学校でもらった問題集で類似問題探したんですけど、似たようなものがなかったので答えは初めの問題から62543です。

ⅣV 図のように、真空中において点0を原点とするxy座標平面上の点A(a, 0)に電気量 +4Q(Q > 0), 点B (-a, 0)に電気量9Q の点電荷を固定した。 y軸上の点(0, α)を 点C.x軸上の正の領域で点0から十分にはなれた点を点D. クーロンの法則の比例定数をと する。 また, 重力の影響は考えないものとする。 C(0, a) -9Q + 4Q B(-a, 0) A(a, 0) D 次の各問いについて それぞれの解答群の中から最も適切なものを一つ選び, 解答欄の数字にマー しなさい。 (1)x軸上において電場が0となる点のx座標を求めよ。 16 16の解答群 1 ① ④ 3a (2)点Cにおける電場の成分の大きさを求めよ。 17 17 の解答群 ① √2 kQ 3a² 5/2 kQ 2a2 5√2 kQ 4a² 5kQ 2a 5a 3√2kQ 2a2 13/2kQ 2a2 (3) 電気量+q(q> 0)の点電荷Pを点Cから点Dまでゆっくり運ぶのに必要な仕事を求め よ。 18 18 | の解答群 /2kQg √2 kQq √2kQg ① a 3a 5a 3√2kQg 5/2 kQq 7/2 kQq 2a 2a 2a (4) 点Dで点電荷Pを静かにはなしたところ, 点電荷Pはx軸に沿ってx軸の負の向きに運動 し、x軸上の点Eで速さが0となった。 点Eのx座標を求めよ。 19 19 |の解答群 a a 2a a 5a a (5) 点電荷Pの質量をm とする。 点電荷Pが点Dから点Eまで運動する間の速さの最大値を 求めよ。 20 20 の解答群 [kQq 5 ma /2kQq ma [kQq 2ma /3kQq ma /kQq ma /5kQg ma

回答募集中 回答数: 0
化学 高校生

全部わかんないです😭

120 100 80 100gの水にとける物質の質量 演習問題 ~1年 化学・地学編~ 1. 図は、3種類の物質 A~C について100gの水に溶ける物質の質量と水の温度の関 係を表している。 【兵庫県】 (1)60℃の水150gが入ったピーカーを3つ用意し、物質A~Cをそれぞれ120gずつ 加えたとき、すべて溶けることができる物質はどれか。 記号で答えよ。 (2)40℃の水150gが入ったビーカーを3つ用意し、 物質A~Cを溶け残りがないよう にそれぞれ加えて3種類の飽和水溶液をつくった。 この飽和水溶液を20℃に冷や したとき、出てくる結晶の質量が多い順に物質A~Cを並べよ。 (3) 水150gに、物質Cを180g加えて、よくかき混ぜた。 ① 物質Cをすべて溶かすためにビーカーを十分加熱した。 その後、40℃まで冷やし たとき、結晶が出てきた。 また、この加熱によって水が 10g蒸発していた。このとき 出てきた結晶の量は何gか。 次のア~エの中から、最も適当なものを1つ選べ。 ア 60g イ 84g ウ 90g エ 140g ② ①の40℃に冷やした後の水溶液の質量パーセント濃度として、最も適当なもの を次のア~エの中から選べ。 ア 33% イ 39% ウ 60% エ 64% 2. 銅球と金属球A~Gの密度を求めるために、次の実験を行った。 [実験] 銅球の質量を測定し、 糸で結んだ後、 図1のようにメスシ リンダーに水を50cm²入れて、銅球全体を沈め、体積を 測定した。次に、A~Gについても、それぞれ同様に測定し、 その結果を図2に表した。 ただし、A~Gは、4種類の金属 のいずれかでできた空洞のないものであり、それぞれ純 粋な物質とする。 また、 質量や体積は20℃で測定するこ ととし、糸の体積は考えないものとする。 (1) 18gの銅球を用いたとき、 実験後のメスシリンダーは図3のよ うになった。 銅の密度を求めよ。 (2) 4種類の金属のうち、1つは密度7.9g/cm3の鉄である。 A~ Gのうち、鉄でできた金属球として適切なものをすべて選べ。 (3) 図4は、 図2に2本の直線 lm を引き、 I ~ⅣVの4つの領域に 分けたものである。 次のア~エの中で、 Ⅰ~ⅣVの各領域にある 物質の密度について述べたものとして適切なものを1つ選べ。 ただし、 Ⅰ~ⅣVの各領域に重なりはなく、直線 l m 上は、どの 領域にも含まれていないものとする。 60 401 (g) 20 3. 水とエタノールの [実験] 図 1 のよう ル 10cm コ内の温 に集め、 B、C、D 試験管 コバル にマッ (1) 沸点の違 (2) 沸騰石を (3) 逆流 (4) 沸騰が ものを 物質B 物質 A 0 0 20 40 60 温度 (℃〕 ア 【愛媛県】 (5) 試験管 はどれ ア 一糸 40 ウ E 100m 32 I IF 質 24 A [g] 16 C 4. 次の 8 G IB D (1) 図 ~20 ま 0 1 2 3 4 15 体積(cm〕 図1 図2 40 直線& 32 領域 Ⅱ. 質 24 -60 ・領域 Ⅰ. 領域Ⅲ- [g] 16- 8 -領域 N ア Iにあるどの物質の密度も、ⅣVにあるどの物質の密度 より小さい。 直線m -50 01 2 3 4 5 イⅡにある物質の密度とIVにある物質の密度は、どれも 体積〔cm] 等しい。 図3 図4 ウⅢにあるどの物質の密度も、IVにあるどの物質の密度 より大きい。 エ Ⅲにあるどの物質の密度も、Iにあるどの物質の密度 より小さい。

回答募集中 回答数: 0
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0
化学 大学生・専門学校生・社会人

高分子の組成比率を求める問題なのですが、講義のスライドに載せられていた求め方が一貫性が無さすぎてどう解けばいいか分かりません。 3つのうちの1番上のもののAの比率の出し方、3つのうちの1番下のもののAの比率の出し方を解説していただきたいです。 2つ目が課題なのですが、これも... 続きを読む

5・2 ビニルポリマーの立体規則性の表示法 α 置換基 B-CH₂ n-ad () ベルヌーイ 確 ad (偶数) * ベルヌーイ 確 * triad isotactic, mm (I) heterotactic, mr (H) syndiotactic,rr (S) ++ (1-P)² 2P (1-P) dyad meso, (f) racemo,(s) tetrad立体規則性により周囲の環境が異なる P (1-P) pentad mmmm mmm mmmr ||||||||-2P(1-P) mmr H2P(1-P) b rmmr |||||||||-2 P³(1-P)² rmr P(1-P)² mmrm 2P(1-P) mrm P(1-P) b mmrr | 2P(1-P) rrm 2P(1-P) rmrm |||||| 2 P³(1-P) rrr ||||(1-8) rmrr ||||||||- 2P(1-P)³ mrrm rrrm |||||||-2P(1-P) 高分子合成化学 p.103 rrrr ||||||(1-P)* A B ポリ塩化 CI ポリイソブチレン CH Ħ CH3 H CH3 ビニリデン CH₂ C C C C C C I H CI H 01 CH3 H CH3 a b C (A=91 mol %) 164H 36H 54H 200 = 54 x:Aの mol %) 76H 120H ai a 3.8 3.6 63H (A=63 mol %) M 126H 130H a₁AAAA az BAAA(AAAB) 2 6(1-x) モル分率 as BAAB bi AABA(ABAA) ✗= (100-9)/100 = 0.91 bz BABA(ABAB) bs: AABB(BBAA) b: BABB(BBAB) C₁ ABA 左の共重合体の組成比を計 ABB(BBA)算せよ cs: BBB ||233H b領域の積分値の半分はA由来で、 半分はB由来 a: az as bi ba ba b C1 C2 C3 4 2 $ (ppm) 126/2 233 63+126/2 2x 2(1-x-y) 6(1-x)+2y 1.5ppmにピークを持つBのモル分率をy とすると、 b領域のBのモル分率は (1-x-y) 図5-15 塩化ビニリデン (A) - イソブチレン (B) 共重合体ならびに両単独 重合体の1H-NMR スペクトル (60 MHz S.Cl溶液 130°C) 16

回答募集中 回答数: 0