学年

質問の種類

数学 高校生

数学Aの問題です。DGの中点Hは▲BDGの外心である。というところが理解できないです。なぜ外心になるのですか?よろしくお願いします。

138 (1)円と直線に関する次の定理を考える。 3点P,Q,R は一直線上にこの順に並んでいるとし,点Tはこの 定理 直線上にないものとする。 このとき, PQ・PR=PT2 が成り立つな らば、直線PT は 3 点 Q,R, T を通る円に接する。 この定理が成り立つことは,次のように説明できる。 直線 PT は 3点 Q,R,Tを通る円0に接しないとする。このとき,直線 PT は円Oと異なる2点で交わる。直線 PT と円0との交点で点Tとは異なる点 を T' とすると, PT・PT'= イが成り立つ。 点と点T' が異な ることにより, PT・PT' の値と PT2の値は異なる。 したがって, PQ・PR=PT2に矛盾するので,背理法により,直線 PT は3点 Q,R, T を通る円に接するといえる。 ア イ の解答群(解答の順序は問わない) PQ ①PR 2 QR 3 QT ④RT (2)△ABCにおいて,AB= BC= AC=1 とする。 3 4 ウ このとき,∠ABC の二等分線と辺 AC との交点をDとすると,AD= I である。 直線 BC 上に, 点Cとは異なり, BC=BE となる点Eをとる。 数学A AC ∠ABE の二等分線と線分AE との交点をFとし、直線ACとの交点をGとす オ △ABFの面積 キ ると, である。 AG カ △AFGの面積 ク ケ 線分 DG の中点をHとすると, BH= である。 また, AH= コ シ’ A ス CH= である。 セ △ABCの外心をOとする。 △ABCの外接円0の半径が ることから、線分BH を 1:2に内分する点をI とすると IO= [ト ナ] であることがわかる。 ニヌ タチ であ [22 共通テスト追試] SAL

回答募集中 回答数: 0
数学 高校生

数Aの問題です! (2)でなぜDは内分するのかを 分かりやすく教えてほしいです!! よろしくおねがいします🙇🏻‍♀️՞

直線 BC と交わる点をDとする。 線分 BD の長さを求めよ。 の二等分 (2)AB=4,BC=3,CA=2である△ABCにおいて、〈およびその外 の二等分線が直線BC と交わる点を, それぞれD, E とする。 線分DEの 長さを求めよ。 Op.361 基本事項 21 CHARY & SOLUTION 三角形の角の二等分線によってできる線分比 線分)=(三角形の2辺の比) B 内角の二等分線による線分比 外角の二等分線による線分比 → 内分 右の図で、いずれもBP:PC=AB: AC 各辺の大小関係をできるだけ正確に図にかいて考える。 解答 B A C (H+HA) (1) 点Dは辺BC を AB AC に外分するから BD: DC=AB: AC A-DATA *AB: AC=1:2 であるから BD:DC=1:2 ← AB: AC=3:6 610 HAEOL よって BD=BC=4 ←BD:DC=1:2 から →C D B BD:BC=1:1 (2)点Dは辺BC を AB: ACに内分するから CHECK ← AB: AC=4:2 BD: DC=AB: AC=2:1 または、その ゆえに DC= 1 2+1 xBC=1 この点をHとするとを また,点Eは辺BC を AB AC に外分するから BE: EC=AB: AC =2:1 ゆえに よって CE=BC=3 DE=DC+CE B DC E =1+3=4 1辺と他の 北の PRACTICE 64 (1) AB=8,BC=3,CA=6 である△ABCにおいて, ∠Aの外角の二等分線か BC と交わる点をDとする。 線分CDの長さを求めよ。 (2)△ABCにおいて, BC=5, CA=3, AB=7 とする。∠Aおよびその外角の 分線が直線 BC と交わる点をそれぞれD, E とするとき 線分 DE の長さを [(水) 椅]

解決済み 回答数: 1