学年

質問の種類

数学 高校生

数IIの三角関数の合成の問題です。 [2]が分からなかったため、解説をお願いします。 合成なのですが、自分のどこが間違っているかわからないので、それも合わせてお願いします。

思考プロセス 例題 162 三角関数の合成 4444 とする。 [1] 次の式を rsin (0+α) の形で表せ。 ただし,r>0, <asa (1) sin0+√3 cost R (2) (2) y = sine-cost 77. -sin0+2cos E, sin(0+ a)=sin cosa + cos sina t 逆向きに考える 変形を考える。 合成 У a²+b2 asin 0+ bcos b =√a+b² (sino+b+ a + cos 0.. √a²+62 ) b COSC = 2 τα ax sina = √√a² + b² a == √a²+b² (sin cos a + cos sina) = a+b² sin (0+α) Action» 三角関数の合成は、加法定理を利用せよ b a+b [1] (1) sin0+√3 cos = 2 sine. 2(sino· 1/1 3 + cose. 2 2 = =2(sino cos+cososin). 3 = 2sin(0+) == (2) -sino + 2 cos0 = √5 {sino-(+)+ = √12+ (√3) - =2 УА √3 P O 1 x 2 + cose. 5 √5 √1)²+22=√5 P УА 2 √5 (sin cosa + cos sina) = √√5 sin(0+α) == tate, a la cosa = -- す角 2 sina = = を満た √5 √5 [2] y = sin-cos = √2 sin √2 sin (0) 8805 x このグラフは,y= sindの (グラフを,0軸を基準にし √2 22 УА 軸方向に2倍に拡 Π Π 4 4 大し,0軸方向に今だけ平 113-- 3 行移動した曲線で、 右の図。 -1 4 44 54 π x 4 P (0.1-) Action $0 7 B 1 グラフのかき方は ® Action 例題 143 19 「三角関数のグラフは、拡 大・縮小と平行移動を考 えよ」 (0 DA

未解決 回答数: 1
数学 高校生

線引いてある2πのとこがどうやって求めるかわかりません。θの係数が2だから周期の2倍になって、4π。でも今回は範囲がθ<イコールπになるから×2分の1。この考え方であってますか??

スキ 0 sin(d 中 260 基本例題 0≦xのとき、次の方程式、不等 ⑩ v3sin0+cos0+1=0 解答 指針 sin, cos が混在した式では,まず, 1種類の三角関数で表すのが基本。 特に、同じ周期の sin と cos の和では, 三角関数の合成 が有効。 (2) sin 20, cos 20 の周期は (1) sine, cos0の周期は2π であるから、合成して, sin (0+α) の方程式, sin (20+α)の不等式を解く。 なお,0+α など,合成した後の角の変域に注意。 CHART sin と cos の和同周期なら合成 (1) vs sin0+cos0=2sin (o+)であるから、方程式は √3 2sin(0+)+1=0 ゆえに 0+0=tとおくと,≧0≦z のとき --1/3を解くと 2 この範囲で sint=- Out (2) cos 20+sin 20+1>0 π 0=t- =T 6 この範囲で sint> -- π dildi 1st<3x, 7r<ts 2 r -≤t 5 4 π 方を解くと 0≤0< 練習 0≦0<2のとき、次の ②161 (1) sin π sin (0+/-)=1/27 6 よっては (2) sin20+cos20=√2sin(20+4) であるから,不等式は ◆sin (20+4) +10 ゆえに sin(20+4) > 1/2 - 20+4=tとおくと,O≧0≦xのとき π ≤t≤2π+ π t= St≤r+= 66 ³r< 3 2' 4T<0≤T 6 +2b5 ≤20+1 <1x, 1x<20 + 4 ≤ ²}/{ r すなわち 5 π 9 π よっては π π π 4 YA 1 基本160 0 -1 π YA YA 2 -1 -y=sint 4 CATE し (1 折 解

未解決 回答数: 0