学年

質問の種類

物理 高校生

教えてください💦

教科書 No.2 物理基礎 PP.34 ~ 73 答えはすべて解答欄に書きなさい。 [1] 次の問いに答えなさい。 (1)力の3要素のうち,カの大きさ, 力の向き以外のあと1つは何か。 (P.35参照) (2) ばねを伸ばしたときの弾性力の大きさは、自然長からの伸びに比例するという法則を何の法則と呼ぶ か。 (P.41 参照) (3) 物体が,現在の運動状態を維持し続ける性質を何というか。 (P.42 参照) (4) 物体の質量がm,生じる加速度がα, はたらく力がFのとき,運動方程式は文字式でどのように表さ れるか。 (P.48 参照) (5)地球上で質量 50kg の人にはたらく重力の大きさは何 N か。 ただし、重力加速度の大きさは 9.8 m/s2である。 (P.49 参照) (6)自然長 0.10m のばねを,大きさ 2.0Nの力で引くと0.12mになった。このばねのばね定数はいくら か。 (P.41 参照) (7) 質量 1.0kg の台車に,次の図のように力を加えた。このときに生じる加速度の大きさを求めなさい。 8.0 N (P.48 参照) 2.0N [2] 力について,次の問いに答えなさい。 (1)次の①~④の力の名称として最も適切なものを,あとの語群から 1 つずつ選び、記号で答えなさい。 (P.35 参照 ) NO ④ [群] A. 弾性力 E. 張力 B. 浮力 F. C. 摩擦力 D. 空気の抵抗力 G. 垂直抗力 H. 静電気力 No.2-1

回答募集中 回答数: 0
数学 高校生

数2の質問です! 172のsinθ、cosθ=0 の時に どのようにしてといているのかを 分かりやすく説明してほしいです!! よろしくおねがいします🙇🏻‍♀️՞

テーマ 40円 千乃の 円奴の他 = 1/3 のとき, cos2a, sin a cos- <α<л, sinα= 2 え方 解答 の値を求めよ。 (4) cos2α を求めるには, sina, cosαのいずれかの値がわかればよい。 sin 2 を求めるには, sinα, cosαの両方の値が必要である。 2 cos2a=1-2sinq=1-2×(1/3) - 7 25 <α <πであるから cosa<0 1- 3-5 2 よって cosα=-√1-sin'α=- したがって sin2a=2sinacosa=2x- 2× ×(-3)=-24 25 sin a 2 1/4であるから よって sin√√ 13 172(1) 左辺を変形すると 整理すると よって sincos したがって、ソは sin >0 5 3" =1/3で最大値2.x 2 √13 をとる。 あるから Ry=2sin(x+1/x) (0≦x y=2sinx (0≦x<2m) gだけ平行移動し 下の図の実線部分のよ sin sin 0 (2cos 0-1)=0 a COS 2. 2 1+cosa 2 5 a <であるから COS ->0 4 2 2 よってco8/1/2=1/15 √5 a COS 12 □ 練習 171 0<a< で, sina=- 13 そのとき,次の値を求めよ。 (1) cos 2a (2) sin2a a (3) cos (4) sin 2 答 第4章:三角関数 sin0=0 または cost=- 002 のとき,! sin0=0から - coso=1から 10=0,π y1 12 Jar + 0 = 5 2 3' 3 6 5 したがって 0=0, 3π, (2) 左辺を変形すると 74 2sinx+3cos 整理すると 左辺を因数分解すると (2cos20-1)-3cos0-1 = 0 sin a= 2cos20-3cos 0-2=0 ただし 3 √13 (cos 0-2)(2cos 0 +1)=0 0≦x<2 より 72 cos であるから よって cose-2 よって 2cos +1=0 したがって 166 すなわち cos 0=-- 175(1) 左辺 応用 2 10号 2-3 テーマ 78 2倍角の公式と方程式 0≦02 のとき, 方程式 sin20=√3cose を解け。 考え方 2倍角の公式を利用して, 方程式を AB=0 の形にする。 解答 左辺を変形すると 173 √ 2sincos0=√3cose ←共通の式 cosが現れる。 から 整理すると cos (2sin0-√3)=0 よって cos0=0または sin0= 2 002のとき, から cos00から π 0=- 2'2 したがって 0=- π π, 3 2' [練習 172 3|22|3 22 √ π 2 ・π sin0= -から=1 2 3' 3" よって 32 笑 πC 002のとき, 次の方程式を解け。 (1) sin20=sin0 (2) cos 20-3cos0-1=0 002の範囲で解くと10 5 x+1)である −V3sin x+cosx=2sin x+ y=2sinx+ 51-1 5 17 xx+1である 5 -15 sin(x+7) Sl -2≤y≤2 また,sin(x+1)--1のとき 5 3 T= TC ゆえに x=ga sin(x+1)=1のとき 0nie 5 +5 x+ = 6 5 ゆえに x=g 複数の上 よって 0≤x< この範 した (2) 2

回答募集中 回答数: 0