学年

質問の種類

数学 高校生

演習15で、両辺に√nをかけた不等式について、n=kの時に両辺に√(k+1)を加えて証明しようと思いました。(今まで解いていた問題だとこのような解き方でしたので…) そうしたら3枚目の最後の式から0以上であることを言えないために、証明できませんでした。 みなさんはどの時点... 続きを読む

3 となるので,①は成り立つ。 1 1 +... + <2- 12 22 ne n 1 n=2のとき, 1 + 5 12 4 22 , 1 = 2- 2 2 n=k(k≧2) のとき, ①が成り立つとすると, 1 1 1 ・+・・・+ <2- 12 22 k2 k ①でn=k+1とした式 1/3+/12/2++//+(k+1)= 1 1 1 <2 3 k+1 を②から導けばよい. ここで,②③の左辺どうし,右辺どうしの差を不等号で結ぶと, (k+1)2 < (2-1+1)-(2-1) 4 ④が成り立つことが示せれば, ② + ④ から ③ を導くことができる.そこで, ④ を示すことを目標にする. そのためには, (④の右辺) (④の左辺) > 0 を示せ ばよい. = (2)-(2)-(1) (k+1)2-k(k+1)-k k(k+1)2 1 1 1 1 k k+1 (k+1)2 1 >O k(k+1)2 よって、 ①は数学的帰納法によって証明された. 注②の両辺に 1 (k+1)2 を加えると, 1 1 1 12 + +…+ + 22 k2 1 (k+1)2 1 <2- + k (k+1)2 1 1 これから 2 + <2- k (←④) を示せばよいとしても (k+1)2 k+1 よい。 15 演習題 ( 解答は p.78) ← ③の左辺は、②の左辺に 1 (k+1)2 を足したものなので ②と③の差に着目する. <a<bかつc <d ⇒ atc<b+d という不等式の性質を用いている。 1+√2+√3+√m 数列 {a} を am= で定める.このとき, すべての自然数nに n 2n 3 ついて、不等式 2/ <a が成り立つことを,数学的帰納法によって証明せよ。 帰納法の使いやすい形に (信州大・医一後) して証明する. 70

解決済み 回答数: 1
数学 大学生・専門学校生・社会人

多様体を構成するために、位相空間に完全アトラスを導入するところで質問です。 完全アトラスを導入するメリットとして、この文章の下線部を「異なる座標系を用いたのに同じ計算ができてしまうという問題が解消される」解釈したのですが、そこがよくわかりません。座標系を変えて計算する... 続きを読む

1 Two n-dimensional coordinate systems & and ŋ in S overlap smoothly provided the functions on¯¹ and ŋo §¯¹ are both smooth. Explicitly, if : U → R" and ŋ: R", then ŋ 1 is defined on the open set ε (ur) → ° (UV) V and carries it to n(u)—while its inverse function § 4-1 runs in the opposite direction (see Figure 1). These functions are then required to be smooth in the usual Euclidean sense defined above. This condition is con- sidered to hold trivially if u and do not meet. Č (UV) R" Ĕ(U) n(UV) R" S n(v) Figure 1. 1. Definition. An atlas A of dimension n on a space S is a collection of n-dimensional coordinate systems in S such that (A1) each point of S is contained in the domain of some coordinate system in, and (A2) any two coordinate systems in ✅ overlap smoothly. An atlas on S makes it possible to do calculus consistently on all of S. But different atlases may produce the same calculus, a technical difficulty eliminated as follows. Call an atlas Con S complete if C contains each co- ordinate system in S that overlaps smoothly with every coordinate system in C. 2. Lemma. Each atlas ✅ on S is contained in a unique complete atlas. Proof. If has dimension n, let A' be the set of all n-dimensional coordinate systems in S that overlap smoothly with every one contained in A. (a) A' is an atlas (of the same dimension as ✅).

未解決 回答数: 0