学年

質問の種類

数学 高校生

なんでlimを求めてるのかわからないです。あと、どういう時に求めればいいのかも教えて欲しいです。

基礎問 150 82 媒介変数で表された関数のグラフ 第5章 微分法 ay平面上で媒介変数日を用いて れる曲線C上の点Pにおける接線がx軸の正方向と (1) Cのグラフをかけ. (1) 00<2πのとき, dr dy -=1-cos0, de do 64で求めたdr (2) 直線とx軸の正方向とのなす角をaとすると(ただし, の直線の傾きは tanα で表せます. (数学ⅡI・B58) lim 0+0 dx (1) 媒介変数で表された関数の微分については 64 で学びました。 ここでは,それを用いてグラフをかく練習をしましょう。最大の ヤマは増減表のかき方です。 解答の中では,スペースの関係上、 をそのまま (途中を省略して)使ってあります。 また, dr よって, グラフは上に凸. dy また,dx -=0 より dy=lim lim dy 0-2-0 dx = sino より 1 (1-cos0)² =lim 解答 1-cos0>0 だから, 増減は右表のよう になる.また, 0+0 1-cos²0 -<0 sin0(1+cos0 ) x=0-sin0 y=1-cos 0 (2) 点Pの座標を求めよ。 0 1+cost_ 0 -=lim sin(2n+t) -0 1-cos (27+t) dy sino dx sin0=0 ∴.0=π (0<<2π より ) -= +00 1-cos 0 0 to sino 0-2=t とおくと, 02-0のとき, t→ - 0 IC (0≤0≤2π) ** 昔の角をなすとき、 dy dx y 20 0 0 -<-<4) + 2そ 注参照 [64 π 150 (5) π + 0 2 :: ... 270 π 6 =lim Sint dy_ do dx dx do だから (0,0), (2π, 0) において曲線Cは それぞれ直線 = 0, π=2πに接する。 以上のことより, グラフは右図 90 と2のときをはずして微分しているのは、この2つの [注] 対して, dx -=0 となるからです。 do dy <0+ --o-cost よって, 演習問題 82 t to sint =lim dy lim 0+0 dx¹ (2)0<6<2πにおいて ポイント その影響で, 00 と2のときのグラフの様子がわからないので, dy lim を調べてあるというわけです。 0-2-0 dx sino π = tan 7 1- cos 0 6 √√3 sin 0+cos0=12sin 1+cost t dx は -≠0 のときに使うことができる式です。 do π 13л -< 6 6 P(21 12 3/4 より ot=5 π5 0+ 6 √3 3 2' 2 2. 傾きは tan √3 sin0=1-cos A 2 sin(8+4)=1 ある直線がx軸の正方向とαの角をなすとき (一匹<a<△)で表せる 151 xy平面上で媒介変数tを用いて, x=√3-1 y=t³-t (−1 <t<1) で 表される曲線上の点P(x,y) における接線の傾きが0になるとき, 点Pの座標を求めよ. 第5章

回答募集中 回答数: 0
物理 高校生

⑵の解説のなぜP1とP2 が図のように振動するのかがわかりません。教えてください

-40 -43 0.98~101 EN (開 r [解説] √=fR V 考察 B5⑤ 158 (1) 考察A: 3③ 考察 C⑧ (2) 4 (3) 3 注目する。 指針 初めて見る実験題材は,発生する現象を問題文から読み取るこ とが重要。 この問題は共鳴の問題であるから,定在波の腹節の位置に 1000≧ 73346 1000 (2) 観察・実験Ⅰ・Ⅱより,パイプ おんさ P1,P2 から発生する音波 の振動数はいずれも1000 Hz 以下 であるから、その波長は 0.34m 340 以上である。 したがって, P1, P2 入 270.34 (1) 考察 A: パイプおんさ P1, P2 を同時に鳴らせたとき, 1 パイプおんさ Pi. P2はU 秒間のうなりの回数は1回未満であったことは, 字型の加工部分が共通して P1, P2 の振動数の差が1Hz 未満であることを示いるため, 発注する音波の している。 よって ③ 振動数は一致している。 Pi 考察 B: パイプおんさ Pi の下端(開口部)を手でふさい で閉管にしたとき共鳴音が大きくなったことは, 下端(開口部) 付近が定在波の節の位置であること を示している。 よって, ⑤ 考察 C : パイプおんさP2 の下端(開口部) を手でふさい で閉管にしたとき,共鳴音が小さくなったことは、 下端(開口部) 付近が定在波の腹の位置であること を示している。よって, ⑧ 3 の長さの差16cmの間に一波長 4 2.30** 23cm 251 P1 P2 WALIT 158) センサー44 センサー 45 16 cm 開口端補正 が含まれている可能性はないので、 気柱内に生じる定在波は図のよう になる。 開口端補正を1.0cm 程 度と仮定しているので,発生する 音波の波長は -x3=16 入 = (16+1.0)×4=68[cm]=0.68〔m〕 7:16/1/u=faより P1 のおおよその振動数は, 340 21.3cm [f= +=500[Hz] ④ 0.68 70,21m (3) 下端(開口部)を手でふさいだときに音量が大きくなる位置 (3) 20.4は、定在波の節の位置である。その位置はパイプおんさ P1 をみたしていたより=波長(34 cm)程度長い位置である。よって,③ 39cm (音波変位で 表している) ^ 4 p が節だと ちゃんと共鳴して 音大きくなる 16cm+1g 1.7-4 0.0 0.8 23cml 134c 各8cm t = (C sirve (2)より 7=6 132

回答募集中 回答数: 0
数学 中学生

🚨🚨至急🚨🚨中学3年生  教科書P63〜65にある【コピー用紙はどんな長方形?】のやつを描かなければならないのですがわかりません。。添付している写真を埋めていただきたいです。❌のところは書かなくて大丈夫です!よろしくお願いします。

コピー用紙はどんな長方形? (教科書 P.63~65) B5判のコピー用紙の, 短い辺と長い辺の長さの比を 調べてみましょう。 A D ● B5判の紙ABCD を下のように折ってみましょう。どんなことがわかるでしょうか。 2 D A [E] E B ③ 下の図の正方形EBCB'で, BC=1として, CEの長さを 求めてみましょう。 -自分の解き方 D B C C B C B ②で調べたことから, B5判の紙の, 短い辺と長い辺の長さの比 BC: CDを求めるには どうしたらよいか、話し合ってみましょう。 B 85 B6 友だちの解き方 84 ④ B5判のコピー用紙の短い辺と長い辺の比はどうなりますか。 ⑤ 学習をふり返ってまとめをしましょう。 学習感想 ⑥ B5判の紙を2等分するように半分に切ると、 B6判の紙になります。 B6判の紙の, 短い辺と 長い辺の長さの比を求めてみましょう。 ⑦ 2枚のB5判の紙を、長い辺が重なるように合わせると B4判の紙になります。 B4判の紙の短い辺と長い辺の 比を求めてみましょう。 B5 B5 B6 B5

回答募集中 回答数: 0
数学 中学生

🚨🚨至急🚨🚨中学3年生  教科書P63〜65にある【コピー用紙はどんな長方形?】のやつを描かなければならないのですがわかりません。。添付している写真を埋めていただきたいです。❌のところは書かなくて大丈夫です!よろしくお願いします。

コピー用紙はどんな長方形? (教科書 P.63~65) ・B5判のコピー用紙の, 短い辺と長い辺の長さの比を 調べてみましょう。 A Xo ⑩ B5 判の紙ABCD を下のように折ってみましょう。どんなことがわかるでしょうか。 ① ②② [3] D A D E A B E ③ 下の図の正方形EBCB'で, BC=1として, CEの長さを 求めてみましょう。 ・自分の解き方 D A B' E B CB C B C B C ②1で調べたことから, B5判の紙の, 短い辺と長い辺の長さの比 BC:CDを求めるには どうしたらよいか、話し合ってみましょう。 B5 D 友だちの解き方 B6 B4 B B' ④ B5判のコピー用紙の短い辺と長い辺の比はどうなりますか。 ⑤ 学習をふり返ってまとめをしましょう。 学習感想 ⑥ B5判の紙を2等分するように半分に切ると、 B6判の紙になります。 B6判の紙の, 短い辺と 長い辺の長さの比を求めてみましょう。 ⑦ 2枚のB5判の紙を、長い辺が重なるように合わせると B4判の紙になります。 B4判の紙の短い辺と長い辺の 比を求めてみましょう。 B5 B5 B6 B5

回答募集中 回答数: 0