学年

質問の種類

理科 中学生

至急です(汗)     Cのチャレンジしようの(2)のPの座標を0,Pに置くところまではわかったのですが、その後がどういうことなのか全くわかりません 解説お願いします🙇

軸との交点の座 は0.軸との交点のx座 つ交点は, 6r-3g=18にg=0 18.x=3より (30) 18 にx=0を代入すると、 ), (0, -6) 30) y 軸….. (0, -6) ■片を求めなさい。 5 傾きは一切片は1 傾き・・・-- なさい。 片1 ==5 y -3 y O 3 -P 1 切片…1 N -=1+2 y= 5 y = ²/3x+2 x+4 = -√2/2√x +4 式て解く。 (x, y)=(1/2, 2/2) (12. 22) -3x+2μ-5の交 通り、x軸に平行な直線の式を求めなさ 【5点】 [x+y=5 連立方程式 1-3x+2y=-5 (2) ①x3+② より =2 よって, x=3 したがって, 2直線の交点の座標は (32) 点(3,2)を通る軸に平行な直線は, y=2 チャレンジしよう 4 右の図で、直線 l, m はそれぞれ 3 関数y=x n (0. p) P -8-4 を解いて, BL を解く。 y=1212x+4のグラ フで、 直線nはx 軸に平行な直線で,直線と直線l,mとの 交点をそれぞれ Q R とします。 次の問いに答 えなさい。 (ただし, 点Pのy座標は点Cの y座標より大きいものとします。) 【4点×2】 (1) 点Cを通り, AOCの面積を2等分す る直線の式を求めなさい。 y= 0 4p/3p+24.0.9 よって、点Pの座標は (0.9) R (2D-8. p) -x+4 点Cの座標を求めると, (4, 6) 点Cを通り, AOCの面積を2等分する直線は, 上の図のようにAOの中点を通る。 中点の座標は (-4, 0) よって, 点 (-4, 0), (46) を通る直 3 線の式を求めると, y = x+3 4 y=x+3 (2) AOR の面積が△BOQの面積より24 大きくなるとき, 点Pの座標を求めなさい。 点Pの座標とすると,P(0, p), Q(3 p. p), R(2p-8, p) Eta 上の図より, AORの面積=12x8xp=4p ABOQの面積 12/2×4×3301/30 (0, 9)

未解決 回答数: 1
数学 高校生

63.3 このような解法(記述)でも問題ないですよね??

478 00000 基本例題 63 2直線の交点の位置ベクトル 四面体OABCの辺OAの中点をP、辺BCを2:1に内分する点をQ、辺OCを 1:3に内分する点を R,辺 AB を 1:6 に内分する点をSとする。OA=d. OB=5, OC = c とすると (1) PQ を で表せ。 (2) RSをa, , で表せ。 33.197 (3) 直線 PQ と直線 RSは交わり, その交点をTとするとき, OT をもって 表せ。 解答 ! 指針 (1), (2) PQ=OQ-OP, RS=OS OR (差による分割) (fl)=90 (3) 平面の場合 (p.418 基本例題24) と同様に,一-04 交点の位置ベクトル 2通りに表し係数 La 1.6+2c 2+1 (1) PQ=OQ-OP= (2) RS=OS-OR= (3) 直線 PQ と直線RS の交点をTとする。 Tは直線PQ上にあるから よって, (1) から 6a+1.6 1+6 に沿って考える。 点 T は直線PQ, RS上にあるから PT=uPQ (u は実数), RT=RS ( は実数)として, Or をa, b,cで2通りに表し, 係数を比較する。 1 1/² à = − 1⁄² ã + ²/² b + ² / č - 3 T は直線 RS 上にあるから ゆえに,(2) から OT-OP+uPQ=(1-u)a+ub + u..... 2 3 → → P, 1 c = 4 a + 1 6-1 c 16-18AO RIST C 4 7 0x0 PT=uPQ (u は実数) 2 D RT=vRS(v は実数) b, c REMI OT=OR+vRS=/va+v6+ 1/ (1-v) č. 第1式と第2式から um/13. o=17 15 U=. v= これは第3式を満たす。 よって, ① から OT=ã+ [類 岩手大] - 15 4点O,A,B,Cは同じ平面上にないから,①,②より 6 1 1 2 1/(1-0)- 70 = 70, 3/4= 4(1-0) V, u= AO-HO 2 ·6+² / - c 15 DER AKY IS 0 $6. 3)=(1-€ I+E+S)=5A HO HA A HA A B R AN 基本24 の断りは重要。 P 2

回答募集中 回答数: 0
数学 中学生

中学数学です。 2️⃣の[1]の(2)がわかりません。 説明詳しくお願いします🙇

2 ります。と交わる点のうち煙が負である点をできれ (200) (43) ある点をDとする。 CD=12であるとき, ア I (1) 以下の会話文の空欄をうめよ。 ただしア, ものを解答群から選べ。 オ 9 千葉敬愛高 " A 6036 $&5 3.5 = 20 = 0 + (1-x) エ (2) 点Cの座標は, キ RSSOS 先生: 点Cの座標を求める方法をみんなで考えてみましょう。 CO 太郎:2点C,Dのx座標をそれぞれc, dとしてy座標を文字で表してみようよ。 花子 : ここからどうすればいいのかな? 先生: 2本の補助線を引いてみましょうか。 1本目は点Aを通りx軸と平行な直線, 2本目 GALE はBを通りy軸と平行な直線を引いて, これらの2直線が交わる点をEとするとどう でしょうか。 305=²* 花子:あっ、△ABEはアですね。 そうすると, ABの長さは イ ウ だね。 太郎 (1) OSCA * .68 そうか! 同じように点Cと点Dに対しても補助線を引いて2直線の交点をFとする 201 と△ABEエ △CDFになるよ。 36 先生: 良いところに気付きましたね。 花子:CF=オ DF=- いいんだね。 12 万 と表せるから、あとは対応する辺の比から式を立てれば SY SS 0S 19 カの解答群 - ク YA ケ WEBSJDM & ② ⑩ 二等辺三角形 ① 正三角形 直角三角形 (5) 6 d+ c ⑦ d-c 1 x 0-) x S+S - (1-x) All オカについては,最も適する コサ Ati 8 (d² - c²) ③ 直角二等辺三角形 83057 9 (d² + c²) スセである。

回答募集中 回答数: 0